Skip to main content
Log in

Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The saccharogenic liquid (SFW) obtained by the enzymatic saccharification of food wastes was used as a medium for production of bacterial cellulose (BC). The enzymatic saccharification of food wastes was carried out by the cultivation supernatant ofTrichoderma harziaum FJ1 culture.Acetobacter xylinum KJ1 was employed for the BC production culture. The physical properties, such as polymerization, crystallinity, Young's modulus, and tensile strength, of BCs produced by three culture methods: the static cultures using HS (Hestrin-Schramm) as a reference medium (A) or the SFW medium (B), the shaking culture (C) or the air circulation culture (D) using the SFW medium, were investigated. The degrees of polymerization of BCs produced under the different culture conditions (A∼D) showed 11000, 9500, 8500, and 9200, respectively. Young's modulus was 4.15, 5.0, 4.0, and 4.6 GPa, respectively. Tensile strength was 124, 200, 80, and 184 MPa, respectively. All of the BC had a form of cellulose I representing pure cellulose. In the case of the shaking culture, the degree of crystallinity was 51.2%, the lowest degree. Under the other culturing conditions, the trend should remain in the range of 89.7–84%. Overall, the physical properties of BC produced from SFW were similar to those of BC from HS medium, a commercial complex medium, and BC production by the air circulation culture mode brought more favorable results in terms of the physical properties and its ease of scale-up. Therefore, it is expected that a new BC production method, like air circulation culture using SFW, would contribute greatly to BC-related manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klemm, D., D. Schumann, U. Udhard, and S. Marsch (2001) Bacterial synthesized cellulose-artificial blood vessels for microsurgery.Prog. Polym. Sci. 26: 1561–1603.

    Article  CAS  Google Scholar 

  2. Shibazaki, H., S. Kuga, F. Onabe, and M. Usuda (1993) Bacterial cellulose membrane as separation medium.J. Appl. Poly. Sci. 50: 965–969.

    Article  CAS  Google Scholar 

  3. Matsuoka, M., T. Tsuchida, K. Matushita, O. Adachi, and F. Yoshinaga (1996) A synthetic medium for bacterial cellulose production byAcetobactr xylinum subsp.sucrofermentans.Biosci. Biotechnol. Biochem. 60: 575–579.

    CAS  Google Scholar 

  4. Naritomi, T., T. Kouda, H. Yan, and F. Yoshinaga (1998) Effect of Lactate on bacterial cellulose production form fructose in continuous culture.J. Ferment. Bioeng. 85: 89–95.

    Article  CAS  Google Scholar 

  5. Chao, Y., T. Ishida, Y. Sugano, and M. Shoda (2000) Bacterial cellulose production byAcetobacter xylinum in a 50-L internal-loop airlift reactor.Biotechnol. Bioeng. 68: 345–352.

    Article  CAS  Google Scholar 

  6. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim (2003) Isolation and characteristics ofTrichoderma harzianum FJ1 producing cellulases and xylanase.J. Microbiol. Biotechnol. 13: 1–8.

    Google Scholar 

  7. Mandel, M. and D. Sternberg (1976) Recent advances in cellulase technology.J. Ferment. Technol. 54: 267–286.

    Google Scholar 

  8. Yoo, S. S., K. C. Kim, Y. A. Oh, S. Y. Chung, and S. J. Kim (2002) The high production of cellulolytic enzymes using cellulosic wastes by a fungus, strain FJ1.Kor. J. Microbiol. Biotechnol. 30: 172–176.

    CAS  Google Scholar 

  9. Kim, K. C., S. W. Kim, M. J. Kim, and S. J. Kim (2005) Saccharification of foodwastes using cellulolytic and amylolytic enzymes fromTrichoderma harzianum FJ1 and its kinetics.Biotechnol. Bioprocess Eng. 10: 52–59.

    Article  CAS  Google Scholar 

  10. Son, C. J., S. Y. Chung, J. E. Lee, and S. J. Kim (2002) Isolation and cultivation characteristics ofAcetobacter xylinum KJ1 producing bacterial cellulose in shaking cultures.J. Microbiol. Biotechnol. 12: 722–728.

    Google Scholar 

  11. Hestrin, S. and M. Schramm (1954) Synthesis of cellulose byAcetobacter xylinum. 1. Micromethod for the determination of celluloses.Biochem. J. 56: 163–166.

    Google Scholar 

  12. Kuga, S., N. Muton, A. Isogai, M. Usuda, and R. M. Brown, Jr. (1989) Cellulose: Structural and function aspects, pp. 81–86. In: J. K. Kennedy, G. O. Phillips, and P. A. Williams (eds.) Ellis Horwood, Chichester, UK.

    Google Scholar 

  13. Alexander, W. J. and R. L. Mitchell (1949) Rapid measurement of cellulose viscosity by nitration methods.Anal. Chem. 21: 1497–1500.

    Article  CAS  Google Scholar 

  14. Segal, L., J. Creely, A. Martin, and C. Conrad (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffreactometer.Text. Res. J. 29: 786–794.

    Article  CAS  Google Scholar 

  15. Annual Book of ASTM Standards, section 8, Plastics, ed. by ASTM, Pennsylvania (1993) Vol. 8.

  16. Biochemistry Experimental Book, ed., pp. 258–259. Teaching Material Editing Committee of Korean Journal of Biochemistry, Tamgudang, Korea. 1994.

  17. Park, J. K., S. H. Hyun, and J. Y. Jung (2004) Conversion ofG. hansenii PJK into non-cellulose-producing mutants acciording to the culture condition.Biotechnol. Bioprocess Eng. 9: 383–388.

    Article  CAS  Google Scholar 

  18. Jung, J. Y., J. K. Park, and H. N. Chang (2005) Bacterial cellulose production byGluconaacetobacter hansenii in an agitated culture without living non-cellulose producing cells.Enzyme Microb. Technol. 37: 347–354.

    Article  CAS  Google Scholar 

  19. Shoda, M. and Y. Sugano (2005) Recent advances in bacterial cellulose production.Biotechnol. Bioprocess Eng. 10: 1–8.

    Article  CAS  Google Scholar 

  20. Yamamoto, H., F. Horii, and A. Hirai (1996)In situ crystallization of bacterial cellulose 2. Influences of different polymeric additives on the formation of celluloses I α and I β at the early stage of incubation.Cellulose 3: 229–242.

    Article  CAS  Google Scholar 

  21. Watanabe, K., Y. Hori, M. Tabuchi, Y. Morinaga, F. Yoshinaga, F. Horii, J. Sigiyama, and T. Okano (1994) Structural features of bacterial cellulose vary depending on the culture conditions.Proceedings of '94 Cellulose R&D, 1st Annual Meeting of the Cellulose Society of Japan, pp. 45–50.

  22. Nishi, Y., M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, and S. Mitsuhashi (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose.J. Mater. Sci. 25: 2997–3001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Jun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, SH., Park, JM., Chun, HY. et al. Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes. Biotechnol. Bioprocess Eng. 11, 26–31 (2006). https://doi.org/10.1007/BF02931864

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931864

Keywords

Navigation