Skip to main content
Log in

Comparison of light and dark nitrogenase activity in selected soil cyanobacteria

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Frequency of heterocytes and nitrogenase activity (NA) under light and dark cultivation conditions was determined in 12 cyanobacterial strains isolated from various soil habitats. In spite of a high variability, significant differences in NA among the strains were found in response of light and dark cultivation. Relatively high NA (9.9–15.3 µmol/h C2H4 per g fresh mass) under light conditions and basal NA after 12 h of dark cultivation were detected inAnabaena, Nodularia, Tolypothrix, and 1 ofCylindrospermum strains. On the other hand, significantly lower NA (0.76–5.4 µmol/h C2H4 per g fresh mass) was found under light conditions inTrichormus, Nostoc and anotherCylindrospermum strain; the activity completely disappeared after 12 h of dark cultivation. NA values were not directly related to the frequency of the heterocytes. The total NA of cyanobacterial colony was found to be probably independent of the number and/or position of heterocytes. Remarkable differences in NA between strains isolated from cultivated fields and strains originating from natural or non-cultivated soils were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown D.E.: Aeration in the submerged culture of microorganisms.Meth.Microbiol. 2, 125–174 (1970).

    Article  Google Scholar 

  • Čerňáková M., Kurucová M., Fuchsová D.: Effect of the herbicide Bentanex on soil microorganisms and their activity.Folia Microbiol. 36, 561–566 (1991).

    Article  Google Scholar 

  • Čerňáková M.: Effect of the insecticide Nerametrine EK-15 on the activity of soil microorganisms.Folia Microbiol. 38, 331–334 (1993).

    Article  Google Scholar 

  • DeLuca T.H., Drinkwater L.E., Wiefling B.A., DeNicola D.M.: Free-living nitrogen-fixing bacteria in temperate cropping systems: influence of nitrogen source.Biol.Fert.Soils 23, 140–144 (1996).

    Article  CAS  Google Scholar 

  • Dong Z.: The N2-fixing bacterium from the apoplast of sugarcane: localization, isolation and characterization.PhD Thesis. Carleton University, Ottawa (Canada) 1995.

  • El-Zahraa F., Zaki T.: Effect of boron and calcium on growth and nitrogen fixation of the blue-green algaCalothrix parietina.Folia Microbiol. 44, 201–204 (1999).

    Article  Google Scholar 

  • Ernst A., Bohme H.: Control of hydrogen-dependent nitrogenase activity by adenylase and electron flow in heterocysts ofAnabaena variabilis ATCC-29413.Biochim.Biophys.Acta 767, 362–368 (1984).

    Article  CAS  Google Scholar 

  • Fay P., Stewart W.D.P., Walshby A.E., Fogg G.E.: Is the heterocyst the site of nitrogen fixation in blue-green algae?Nature 220, 810–812 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Fleming H., Haselkorn R.: Differentiation inNostoc muscorum: nitrogenase is synthetized in heterocytsts.Proc.Nat.Acad.Sci.USA 70, 2727–2731 (1973).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gollerbakh M.M., Shtina E.A.:Soil Algae. (In Russian) Nauka, Leningrad 1969.

    Google Scholar 

  • Hardy R.W.G., Burns R.C., Holsten R.D.: Application of the acetylene-ethylene assay for measurement of nitrogen fixation.Soil. Biol.Biochem. 5, 47–81 (1973).

    Article  CAS  Google Scholar 

  • Hrouzek P., Šimek M., Komárek J.: Nitrogenase activity and diversity of six soilNostoc strains.Arch.Hydrobiol. 108 (Suppl.), 87–101 (2003).

    Google Scholar 

  • Kashyap A.P., Pandey K.D., Gupta P.K.: Nitrogenase activity of the antarctic cyanobacteriumNostoc commune — influence of temperature.Folia Microbiol. 36, 557–560 (1991).

    Article  CAS  Google Scholar 

  • Komárek J., Anagnostidis K.: Modern approach to classification system ofCyanophytes 4 —Nostocales.Arch.Hydrobiol. 56 (Suppl.). 247–345 (1989).

    Google Scholar 

  • Liu X.-J., Chen F.: Cell differentiation and colony alteration of an edible terrestrial cyanobacteriumNostoc flagelliforme, in liquid suspension cultures.Folia Microbiol. 48, 619–626 (2003).

    Article  CAS  Google Scholar 

  • Lukešová A.: Soil algae in four secondary succesional stages on abandoned fields.Arch.Hydrobiol. 71 (Suppl.), 81–102 (1993).

    Google Scholar 

  • Maršálek B., Šimek M., Smith R.J.: The effect of ecdysterone on the cyanobacteriumNostoc 6720.Z.Naturforsch. 47C, 726–730 (1992).

    Google Scholar 

  • Mullineaux P.M., Gallon J.R., Chaplin A.E.: Acetylene reduction (nitrogen fixation) by cyanobacteria growth under alternating light-dark cycle.FEMS Microbiol.Lett. 10, 245–247 (1981).

    Article  Google Scholar 

  • Ohmori M., Hattori A.: Effect of nitrate on nitrogen fixation by blue-green algae,Anabaena cyhndrica.Plant Cell Physiol. 13, 589–599 (1972).

    CAS  Google Scholar 

  • Pan B., Vessey K.: Response of the endophytic diazotrophicGluconacetobacter diazotrophicus on solid media to changes in atmospheric partial O2 pressure.Appl.Environ.Microbiol. 67, 4694–4700 (2001).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roger P.A., Watanabe I.: Technologies for utilizing biological nitrogen fixation in wetland rice: potentialities, current usage, and limiting factors.Fertil.Res. 9, 39–77 (1986).

    Article  Google Scholar 

  • Roger P.A., Simpson I., Oficial R., Ardales S., Jimenez R.: Effects of pesticides on soil and water microflora and mesofauna in wetland rice fields: a summary of current knowledge and extrapolation to temperate environments.Austral.J.Exp.Agric. 34, 1057–1068 (1994).

    Article  Google Scholar 

  • Rowell P., Enticott S., Stewart W.D.P.: Glutamine synthetase and nitrogenase activity in blue-green algaAnabaena cylindrica.New Phytol. 79, 41–54 (1977).

    Article  CAS  Google Scholar 

  • Shah V., Garg N., Madamwar D.: Ultrastructure of the cyanobacteriumNostoc muscorum and exploitation of the culture for hydrogen production.Folia Microbiol. 48, 65–70 (2003).

    Article  CAS  Google Scholar 

  • Šimek M., Vacek V., Ulehlova B.: A study of nitrogen fixation by stands of white clover (Trifolium repens L.). (In Czech)Rostl. Vyroba 33, 279–291 (1987).

    Google Scholar 

  • Šimek M., Maršálek B.: Evidence for abscisic acid-caused enhancement of nitrogenase activity inTrichormus variabilis.Arch. Hydrobiol. 67 (Suppl.), 91–102 (1992).

    Google Scholar 

  • Stanier R.Y., Cohen-Bazire G.: Phototrophic procaryotes: the cyanobacteria.Ann.Rev.Microbiol. 31, 225–274 (1977).

    Article  CAS  Google Scholar 

  • Van Gorkom H.J., Donze M.: Localization of nitrogen fixation inAnabaena.Nature 234, 231–232 (1971).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hrouzek.

Additional information

The research was supported by the Research Plan of theInstitute of Soil Biology (no. Z6066911). Ms. L. Jišová is greatly acknowledged for help with laboratory analyses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrouzek, P., Lukešová, A. & Šimek, M. Comparison of light and dark nitrogenase activity in selected soil cyanobacteria. Folia Microbiol 49, 435–440 (2004). https://doi.org/10.1007/BF02931606

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931606

Keywords

Navigation