Skip to main content
Log in

Light intensity stimulates the production of extracellular polymeric substances (EPS) in a culture of the desert cyanobacterium Trichormus sp

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacteria are photoautotrophic organisms that inhabit diverse environments. Some species have been characterized for their production of extracellular polymeric substances (EPS) that have several biotechnological applications. EPS production is dependent on the growth conditions of the cyanobacteria, such as the content of nitrogen in the culture medium, the supplementation of the media with NaCl, or the light intensity. In this work, we studied the production profile of EPS at different growth stages in a culture from desert of the cyanobacterium Trichormus sp. The culture had been obtained from biological soil crusts (BSC) collected from a semi-arid zone of the IV region of Chile. We evaluated the effect of NaCl and nitrogen content in the culture media, in addition to the light intensity, on the growth and EPS production of the cyanobacterial cultures. The growth curve of Trichormus sp. showed a lag phase up to day 6, a short exponential phase up to day 10, and a stationary phase that lasted to the end of the experiment. The production of EPS was evaluated during the exponential growth phase of Trichormus sp. and showed a fourfold EPS production at 9.6 W m−2, compared to the basal condition at 3.2 W m−2. This light intensity is the highest light condition reported for the evaluation of EPS production in soil cyanobacteria. In this work, we show that the light intensity, but not the presence of NaCl or nitrogen in the medium, stimulates the production of EPS in the desert cyanobacterium Trichormus sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Adessi A, Cruz de Carvalho R, De Philippis R, Branquinho C, Marques da Silva J (2018) Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Bio Biochem 116:67–69

    Article  CAS  Google Scholar 

  • Allakhverdiev S, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

  • Bailey S, Grossman A (2008) Photoprotection in cyanobacteria: regulation of light harvesting. Photochem Photobiol 84:1410–1420

    Article  CAS  PubMed  Google Scholar 

  • Baranyi J (1998) Comparison of stochastic and deterministic concepts of bacterial lag. J Theor Biol 192:403–408

    Article  CAS  PubMed  Google Scholar 

  • Bellini E, Ciocci M, Savio S, Antonaroli S, Seliktar D, Melino S, Congestri R (2018) Trichormus variabilis (Cyanobacteria) biomass: from the nutraceutical products to novel EPS-cell/protein carrier systems. Mar Drugs 16:298

  • Bhatnagar M, Parwani L, Sharma V, Ganguly J, Bhatnagar A (2014) Exopolymers from Tolypothrix tenuis and three Anabaena sp. (Cyanobacteriaceae) as novel blood clotting agents for wound management. Carbohydr Polym 99:692–699

  • Bothe H, Schmitz O, Yates M, Newton W (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Bio Rev 74:529–551

    Article  CAS  Google Scholar 

  • Bowker M, Maestre F, Escolar C (2010) Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biol Biochem 42:405–417

    Article  CAS  Google Scholar 

  • Bowker M, Reed S, Maestre F, Eldridge D (2018) Biocrusts: the living skin of the earth. Plant Soil 429:1–7

    Article  CAS  Google Scholar 

  • Bullerjahn G, Post A (2014) Physiology and molecular biology of aquatic cyanobacteria. Front Microbiol 5:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Carkovic A, Calcagni M, Vega A, Coquery M, Moya P, Bonilla C, Pastén P (2016) Active and legacy mining in an arid urban environment: challenges and perspectives for Copiapó. Northern Chile Environ Geochem Health 38:1001–1014

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang G, Hong S, Liu A, Li C, Liu Y (2009) UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J Integr Plant Biol 51:194–200

  • Chittora D, Meena M, Barupal T, Swapnil P (2020) Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophys Rep 22:1–10

    Google Scholar 

  • Cho S, Jeoung S, Song J, Kupriyanova E, Pronina N, Lee B, Jo S, Park B, Choi S, Song J, Park Y (2015) Genomic survey and biochemical analysis of recombinant candidate cyanobacteriochromes reveals enrichment for near UV/violet sensors in the halotolerant and alkaliphilic cyanobacterium Microcoleus IPPAS B353. J Biol Chem 290:28502–28514

  • Chock T, Antoninka A, Faist A, Bowker M, Belnap J, Barger N (2019) Responses of biological soil crusts to rehabilitation strategies. J Arid Environ 163:77–85

    Article  Google Scholar 

  • de los Ríos A, Ascaso C, Wierzchos J, Vincent W, Quesada A (2015) Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv 24:841–863

    Article  Google Scholar 

  • De Philippis R, Sili C, Vincenzini M (1996) Response of an exopolysaccharide-producing heterocystous cyanobacterium to changes in metabolic carbon flux. J Appl Phycol 8:275–281

    Article  Google Scholar 

  • Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Flombaum P, Gallegos J, Gordillo R, Rincón J, Zabala L, Jiao N, Karl D, Li W, Lomas M, Veneziano D, Vera C, Vrugt J, Martiny A (2013) Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A 110:9824–9829

  • Flores E, Herrero A, Wolk C, Maldener I (2006) Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends Microbiol 14:439–443

    Article  CAS  PubMed  Google Scholar 

  • Fundación Chile (2016) Desde el cobre a la innovación. Roadmap Tecnológico 2015–2035. https://biblioteca.digital.gob.cl/handle/123456789/900https://fch.cl/publicacion/roadmap-desde-el-cobre-a-la-innovacion-2015-2035/

  • Gao X (2017) Scytonemin plays a potential role in stabilizing the exopolysaccharidic matrix in terrestrial cyanobacteria. Microb Ecol 73:255–258

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Wojciechowski M (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS ONE 4:e7801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ge H, Xia L, Zhou X, Zhang D, Hu C (2014) Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp. J Microbiol 52:179–183

    Article  CAS  PubMed  Google Scholar 

  • Han P, Sun Y, Jia S, Zhong C, Tan Z (2014) Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydr Polym 105:145–151

  • Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydr Polym 54:33–42

    Article  CAS  Google Scholar 

  • Ivanov A, Sane P, Hurry V, Öquist G, Huner N (2008) Photosystem II reaction centre quenching: Mechanisms and physiological role. Photosynth Res 98:565–574

    Article  CAS  PubMed  Google Scholar 

  • Jindal N, Pal Singh D, Singh Khattar J (2013) Optimization, characterization, and flow properties of exopolysaccharides produced by the cyanobacterium Lyngbya stagnina. J Basic Microbiol 53:902–912

  • Jittawuttipoka T, Planchon M, Spalla O, Benzerara K, Guyot F, Cassier-Chauvat C, Chauvat F (2013) Multidisciplinary evidences that Synechocystis PCC6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PLoS ONE 8:e55564

  • Komenda J, Tichý M, Prášil O, Knoppová J, Kuviková S, De Vries R, Nixon PJ (2007) The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. Plant Cell 19:2839–2854

  • Kvíderová J, Kumar D, Lukavský J, Kaštánek P, Adhikary SP (2019) Estimation of growth and exopolysaccharide production by two soil cyanobacteria, Scytonema tolypothrichoides and Tolypothrix bouteillei as determined by cultivation in irradiance and temperature crossed gradients. Eng Life Sci 19:184–195

  • Kumar J, Singh V, Prasad S (2015) NaCl-induced physiological and biochemical changes in two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different photosynthetically active radiation. J Photochem Photobiol B 151:221–232

  • Lama L, Nicolaus B, Calandrelli V, Manca MC, Romano I, Gambacorta A (1996) Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10 C. Phytochemistry 42:655–659

  • Lan S, Wu L, Zhang D, Hu C (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ Earth Sci 65:77–88

    Article  Google Scholar 

  • Langhans T, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment eechniques. Microb Ecol 58:394–407

    Article  PubMed  Google Scholar 

  • Liu C, Li L, Wu C, Guo K, Li J (2016) Growth and antioxidant production of Spirulina in different NaCl concentrations. Biotechnol Lett 38:1089–1096

  • Liu L, Qin B, Zhang Y, Zhu G, Gao G, Huang Q, Yao X (2014) Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii). J Environ Sci (China) 26:1725–1732

  • Lyons T, Reinhard C, Planavsky N (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315

    Article  CAS  PubMed  Google Scholar 

  • Mager D, Thomas A (2011) Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes. J Arid Environ 75:91–97

    Article  Google Scholar 

  • Makhalanyane T, Valverde A, Gunnigle E, Frossard A, Ramond J, Cowan D (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221

    Article  CAS  PubMed  Google Scholar 

  • Mendez M, Maier R (2008) Phytostabilization of mine tailings in arid and semiarid environments - an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  PubMed  Google Scholar 

  • Miao X, Wu Q, Wu G, Zhao N (2003) Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 218:71–77

  • Moreno J, Vargas MA, Olivares H, Rivas J, Guerrero M (1998) Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J Biotechnol 60:175–182

    Article  CAS  Google Scholar 

  • Mota R, Guimarães R, Büttel Z, Rossi F, Colica G, Silva C, Santos C, Gales L, Zille A, De Philippis R, Pereira S, Tamagnini P (2013) Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr Polym 92:1408–1415

  • Mota R, Rossi F, Andrenelli L, Pereira S, De Philippis R, Tamagnini P (2016) Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites. Appl Microbiol Biotechnol 100:7765–7775

  • Muñoz-Rojas M, Román J, Roncero-Ramos B, Erickson T, Merritt D, Aguila-Carricondo P, Cantón Y (2018) Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Sci Total Environ 636:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Najdenski H, Gigova L, Iliev I, Pilarski P, Lukavský J, Tsvetkova I, Ninova M, Kussovski V (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 48:1533–1540

    Article  CAS  Google Scholar 

  • Ogawa K, Yoshikawa K, Matsuda F, Toya Y, Shimizu H (2018) Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions. J Biosci Bioeng 126:596–602

  • Ogawa T, Misumi M, Sonoike K (2017) Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynth Res 133:63–73

    Article  CAS  PubMed  Google Scholar 

  • Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M, Kaplan A, Murik O (2019) Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing. Mol Ecol 28:2305–2320

    Article  CAS  PubMed  Google Scholar 

  • Ortiz, C., Muñoz, A., Wilkens, M., Muñoz, F., Fernández, D. (2016). Genomic studies of biological soil crusts — successional dynamics for the rehabilitation of mine tailing facilities. In: Fourie AB, Tibbett M (eds), Proceedings of the 11th International Conference on Mine Closure. Australian Centre for Geomechanics, Perth, pp. 151–160

  • Ortiz, C., Ledesma, U., & Pontigo, D. (2019). Inoculation of soil cyanobacteria improves fertility of a soil mixed with copper tailing sands. Proceedings of the 5th World Congress on New Technologies. Lisbon, Portugal – August, Paper No 179

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102:143

    Article  CAS  PubMed  Google Scholar 

  • Otero A, Vincenzini M (2004) Nostoc (Cyanophyceae) goes nude: Extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J Phycol 40:74–81

    Article  CAS  Google Scholar 

  • Ozturk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17:595–602

    Article  CAS  Google Scholar 

  • Paliwal C, Mitra M, Bhayani K, Bharadwaj S, Ghosh T, Dubey S, Mishra S (2017) Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol 244:1216–1226

    Article  CAS  PubMed  Google Scholar 

  • Park C, Li X, Zhao Y, Jia R, Hur J (2017) Rapid development of cyanobacterial crust in the field for combating desertification. PLoS ONE 12:e179903

    Google Scholar 

  • Park J, Dinh T (2019) Contrasting effects of monochromatic LED lighting on growth, pigments and photosynthesis in the commercially important cyanobacterium Arthrospira maxima. Bioresour Technol 291:121846

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Prieto-Barajas C, Valencia-Cantero E, Santoyo G (2018) Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application. Electron J Biotechnol 31:48–56

    Article  Google Scholar 

  • Raja R, Hemaiswarya S, Ganesan V, Carvalho I (2016) Recent developments in therapeutic applications of cyanobacteria. Crit Rev Microbiol 42:394–405

    CAS  PubMed  Google Scholar 

  • Rajaniemi P, Hrouzek P, Kaštovská K, Willame R, Rantala A, Hoffmann L, Komárek J, Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55:11–26

  • Rastogi R, Sinha R, Incharoensakdi A (2013) Partial characterization, UV-induction and photoprotective function of sunscreen pigment, scytonemin from Rivularia sp. HKAR-4. Chemosphere 93:1874–1878

  • Redfield E, Barns S, Belnap J, Kuske C, Daane L (2002) Three predominant soil crusts of the Colorado Plateau. FEMS Microbiol Ecol 6:55–63

    Article  Google Scholar 

  • Rossi F, De Philippis R (2015) Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5:1218–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi F, Mugnai G, De Philippis R (2018) Complex role of the polymeric matrix in biological soil crusts. Plant Soil 429:19–34

    Article  CAS  Google Scholar 

  • SERNAGEOMIN (2016). Atlas geológico y minero. Servicio Nacional de Geología y Minería, Santiago.

  • Shaw E, Hill D, Brittain N, Wright D, Täuber U, Marand H, Helm R, Potts M (2003) Unusual water flux in the extracellular polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microbiol 69:5679–5684

  • Su C, Chi Z, Lu W (2007) Optimization of medium and cultivation conditions for enhanced exopolysaccharide yield by marine Cyanothece sp. 113. Chin J Oceanol Limnol 25:411–417

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333

  • Telfer A (2005) Too much light? How β-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4:950–956

    Article  CAS  PubMed  Google Scholar 

  • Tiwari O, Khangembam R, Shamjetshabam M, Sharma A, Oinam G, Brand J (2015) Characterization and optimization of bioflocculant exopolysaccharide production by cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in culture conditions. Appl Biochem Biotechnol 176:1950–1963

  • Tiwari O, Muthuraj M, Bhunia B, Bandyopadhyay T, Annapurna K, Sahu M, Indrama T (2020) Biosynthesis, purification and structure-property relationships of new cyanobacterial exopolysaccharides. Polym Test 89:106592

    Article  CAS  Google Scholar 

  • Vicente-García V, Rios-Leal E, Calderón-Domínguez G, Cañizares-Villanueva R, Olvera-Ramírez R (2004) Detection, isolation, and characterization of exopolysaccharide produced by a strain of Phormidium 94a isolated from an Arid Zone of Mexico. Biotechnol Bioeng 85:306–310

  • Vincent W, Gibson J, Pienitz R, Villeneuve V, Broady P, Hamilton P, Howard-Williams C (2000) Ice shelf microbial ecosystems in the high arctic and implications for life on snowball earth. Sci Nat 87:137–141

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Xu Z (2016) Effects of dihydroartemisinin and artemether on the growth, chlorophyll fluorescence, and extracellular alkaline phosphatase activity of the cyanobacterium Microcystis aeruginosa. PLoS ONE 11:e164842

  • Weber, B., Büdel, B., & Belnap, J. (Eds.) (2016). Biological soil crusts: an organizing principle in drylands. Springer, Cham

  • Wijffels R, Kruse O, Hellingwerf K (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zhu B, Li C, Yao M, Zhang B, Li X (2020) Development of biological soil crust prompts convergent succession of prokaryotic communities. CATENA 187:104360

    Article  Google Scholar 

  • Yeager C, Kornosky J, Housman D, Grote E, Belnap J, Kuske C (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Environ Microbiol 70:973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yerrapragada S, Shukla A, Hallsworth-Pepin K, Choi K, Wollam A, Clifton S, Qin X, Muzny D, Raghuraman S, Ashki H, Uzman A, Highlander S, Fryszczyn B, Fox G, Tirumalai M, Liu Y, Kim S, Kehoe D, Weinstock G (2015) Extreme sensory complexity encoded in the 10-megabase draft genome sequence of the chromatically acclimating cyanobacterium Tolypothrix sp. PCC 7601. Genome Announc 3:e00355-e415

Download references

Funding

This work was supported by Dicyt Project Code 021743OC_POSTDOC and Project Dicyt 021743OC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Dahech.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahech, P., Schlömann, M. & Ortiz, C. Light intensity stimulates the production of extracellular polymeric substances (EPS) in a culture of the desert cyanobacterium Trichormus sp. J Appl Phycol 33, 2795–2804 (2021). https://doi.org/10.1007/s10811-021-02516-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02516-x

Keywords

Navigation