Skip to main content
Log in

Biocalorimetric and respirometric studies on metabolic activity of aerobically grown batch culture ofPseudomonas aeruginosa

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Biocalorimetry has proved to be a useful tool for scale up and control of bioreactors. The findings reported here are fundamental data required for scale up and control of a reactor for the treatment of saline tannery wastewater. The study deals with biokinetics of a halo-tolerant bacteriaPseudomonas aeruginosa isolated from tannery saline wastewater (soak liquor). Batch experiments were performed in a biocalorimeter and the isolated strain was grown in a glucose-limited mineral salt medium (MSM) at optimized growth conditions. Tessier model is found to fit well for the growth ofP. aeruginosa in biocalorimeter. Biokinetic constants are evaluated and simulation is done to validate experimental results with theoretical values. Respirogram and heat profiles are seen to follow the biomass growth curve. Oxycalorific coefficient is validated with the theoretical values and those noticed in the published literature. There is a good correlation between experimentally determined heat yields and the theoretical values predicted by elemental and enthalpy balances. The heat yield and biomass yield values indicated the behavior of the isolated organism in a substrate-limited well defined growth media (MSM)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ligthart, J. and E. Daverio (2003) Application of calorimetric measurements for biokinetic characterization of nitrifying population in activated sludge.Water Kes. 37: 2723–2731.

    Article  Google Scholar 

  2. Wadso, I. (1997) Trends in isothermal microcalorimetry.Chem. Soc. Rev. 26: 79–86.

    Article  Google Scholar 

  3. Meier-Schneiders, M., U. Grosshans, C. Busch, and G. Eigenberger (1995) Biocalorimetry-supported analysis of fermentation process.Appl. Microbiol. Biotechnol. 43: 431–439.

    CAS  Google Scholar 

  4. Tan, N., F. X. Prenafeta-Boldu, J. L. Opsteeg, G. Lettinga, and J. A. Field (1999) Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures.Appl. Microbiol. Biotechnol. 51: 865–871.

    Article  CAS  Google Scholar 

  5. Kovacs, N. (1956) Identification ofPseudomonas pyocyanea by the oxidase reaction.Nature 178: 703.

    Article  CAS  Google Scholar 

  6. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  7. Singh, V. (1996) On-line measurement of oxygen uptake in cell culture using the dynamic method.Biotechnol. Bioeng. 52: 443–448.

    Article  CAS  Google Scholar 

  8. Voisard, D., U. von Stockar, and I. W. Marison (2002) Quantitative calorimetric investigation of fed-batch cultures ofBacillus sphaericus 1593M.Thermochim. Acta 394: 99–111.

    Article  CAS  Google Scholar 

  9. Dermoun, Z. and J. P. Belaich (1980) Microcalorimetric study ofE. coli aerobic growth: theoretical aspects of growth on succinic acid.J. Bacteriol. 143: 742–746.

    CAS  Google Scholar 

  10. Bauer, S. and E. Ziv (1976) Dense growth of aerobic bacteria in a bench-scale fermentor.Biotechnol. Bioeng. 18: 81–94.

    Article  CAS  Google Scholar 

  11. Kemp, R. B. (2004) Thermobiochemical studies of animal cell systemsin vitro.Thermochim. Acta Chap 9. 215–249.

    Google Scholar 

  12. Bailey, J., and F. Ollis (1986)Biochemical Engineering Fundamentals, pp. 383–386. McGraw-Hill, New York, NY, USA.

    Google Scholar 

  13. Robinson, J. A. and J. M. Tiedje (1983) Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve.Appl. Environ. Microbiol. 45: 1453–1458.

    CAS  Google Scholar 

  14. Beyenal, H., S. N. Chen, and Z. Lewandowski (2003) The double substrate growth kinetics ofPseudomonas aeruginosa.Enzyme Microb. Technol. 32: 92–98.

    Article  CAS  Google Scholar 

  15. Sandler, S. I. and H. Orbey (1991) On the thermodynamics of microbial growth process.Biotechnol. Bioeng. 38: 697–718.

    Article  CAS  Google Scholar 

  16. Gustafsson, L. (1991) Microbiological calorimetry.Thermochim. Acta 193: 145–171.

    Article  CAS  Google Scholar 

  17. Birou, B., I. W. Marison, and U. von Stockar (1987) Calorimetric investigation of aerobic fermentations.Biotechnol. Bioeng. 30: 650–660.

    Article  CAS  Google Scholar 

  18. Battley, E. H. (1987)Energetics of Microbial Growth. pp 423–426, Wiley-Interscience, New York, NY, USA.

    Google Scholar 

  19. Kovarova-Kovar, K. and T. Egli (1998) Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed-substrate kinetics.Microbiol. Mol. Biol. Rev. 62: 646–666.

    CAS  Google Scholar 

  20. Cooney, M. J., I. W. Marison, W. M. van Gulik, and U. von Stockar (1996) Calorimetric and stoichiometric analysis of growth ofKluyveromices fragilis in continuous culture: nitrogen limitation imposed upon carbon-limited growth.Appl. Microbiol. Biotechnol. 44: 643–653.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surianarayanan Mahadevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivaprakasam, S., Mahadevan, S. & Bhattacharya, M. Biocalorimetric and respirometric studies on metabolic activity of aerobically grown batch culture ofPseudomonas aeruginosa . Biotechnol. Bioprocess Eng. 12, 340–347 (2007). https://doi.org/10.1007/BF02931054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931054

Keywords

Navigation