Skip to main content
Log in

Silkworm (Bombyx mori) hemocytes do not produce reactive oxygen metabolites as a part of defense mechanisms

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

To investigate whether hemocytes ofBombyx mori (Lepidoptera) larvae produce reactive oxygen species (ROS) as part of the oxidative killing of invading pathogens, the production of ROS was measured as a luminol- and lucigenin-enhanced chemiluminescence of unstimulated or stimulated (zymosan particles, phorbol myristate acetate, calcium ionophore, rice starch orXenorhabdus nematophila) hemolymph. No detectable ROS production was found. The spontaneous and activated ROS production measured with hemocytes,i.e. under the conditions when the antioxidative potential of hemolymph plasma was eliminated, was again undetectable. Likewise, ROS production by isolated hemocytes was observed by spectrophotometric (NBT test, cytochromec assay) and fluorimetric (using dihydrorhodamine and hydroethidine probes) methods. Hence none of the experimental approaches used indicated the production of ROS by hemocytes ofB. mori larvae as part of their immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhurst R.J., Dunphy G.B.: Tripartite interaction between symbiotically associated entomopathogenic bacteria, nematodes, and their insect hosts, pp. 1–23 in N.E. Beckage, S.N. Thompson, B. Federici (Eds):Parasites and Pathogens of Insects, Vol. 2. Academic Press, New York 1993.

    Google Scholar 

  • Anderson R.S., Holmes B., Good R.A.: Comparative biochemistry of phagocytosing insect hemocytes.Comp.Biochem.Physiol. 46B, 595–602 (1973).

    Google Scholar 

  • Arakawa T.: Superoxide generationin vitro in lepidopteran larval hemolymph.J.Insect Physiol. 40, 165–171 (1994).

    Article  Google Scholar 

  • Arakawa T.: Superoxide generative reaction in insect hemolymph and its mimic model system with surfactantsin vitro.Insect Biochem.Mol.Biol. 25, 247–253 (1995a).

    Article  Google Scholar 

  • Arakawa T.: Possible involment of an enzymatic system for superoxide generation in lepidopteran larval hemolymph.Arch.Insect Biochem.Physiol. 29, 281–291 (1995b).

    Article  PubMed  CAS  Google Scholar 

  • Azumi K., Kuribayashi F., Kanegasaki S., Yokosawa H.: Zymosan induces production of superoxide anions by hemocytes of the solitary ascidianHalocynthia roretzi.Comp.Biochem.Physiol. 133, 567–574 (2002).

    Google Scholar 

  • Bell K.L., Smith V.J.:In vitro superoxide production by hyaline cells of the shore crabCarcinus maenas (L.).Dev.Comp.Immunol. 17, 211–219 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Benov L., Sztejnberg L., Fridovich I.: Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical.Free Rad.Biol.Med. 25, 826–831 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Čiž M., Lojek A.: Improved dextran preparation of human leukocytes for chemiluminescence analysis of the oxidative burst of polymorphonuclear cells.Clin.Lab.Haematol. 19, 49–51 (1997).

    PubMed  Google Scholar 

  • Drábiková K., Jančinová V., Nosal R., Danihelova E.: Human blood platelets, PMN leukocytes and their interactionsin vitro. Responses to selective and non-selective stimuli.Gen.Physiol.Biophys. 19, 393–404 (2000).

    PubMed  Google Scholar 

  • Gardiner E.M.M., Strand M.R.: Monoclonal antibodies bind distinct classes of themocytes in the mothPseudoplusia includens.J.Insect.Physiol. 45, 113–126 (1999).

    Article  PubMed  Google Scholar 

  • Glupov V.V., Khvoshevskaya M.F., Lozinskaya Y.L., Dubovski I.M., Martemyanov V.V., Sokolova J.Y.: Application of the nitroblue tetrazolium-reduction method for studies on the production of reactive oxygen species in insect hemocytes.Cytobios 106, 165–178 (2001).

    PubMed  Google Scholar 

  • Ito T., Matsutani T., Mori K., Nomura T.: Phagocytosis and hydrogen peroxide production by phagocytes of the sea urchinStrongylocentrotus nudus.Dev.Comp.Immunol. 16, 287–294 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Kubala L., Lojek A., Číž M., Vondráček J., Dušková M., Slaviková H.: Determination of phagocyte activity in whole blood of carp (Cyprinus carpio) by luminol-enhanced chemiluminescence.Vet.Med.Czech 41, 323–327 (1996).

    CAS  Google Scholar 

  • Lambert C., Nicolas J.L.: Specific inhibition of chemiluminescent activity by pathogenic vibrios in hemocytes of two marine bivalves:Pecten maximus andCrassostrea gigas.J.Invertebr.Pathol. 71, 53–63 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Lavine M.D., Strand M.R.: Insect hemocytes and their role in immunity.Insect Biochem.Mol.Biol. 32, 1295–1309 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lojek A., Kubala L., Čižova H., Čiž M.: A comparison of neutrophil chemiluminescence in cuvettes and microtitre plates.Luminescence 17, 1–4 (2002).

    Article  PubMed  Google Scholar 

  • Marnila P., Thska A., Lagerspetz K., Lilius E.M.: Phagocyte activity in the frogRana temporaria: whole blood chemiluminescence method and the effects of temperature and thermal acclimation.Comp.Biochem.Physiol. 111, 609–614 (1995).

    Article  CAS  Google Scholar 

  • Mazet I., Pendland J., Boucias D.: Comparative analysis of phagocytosis of fungal cells by insect hemocytesversus horse neutrophils.Dev.Comp.Immunol. 18, 455–466 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M., Mori K., Inooka S., Nomura T.:In vitro production of hydrogen peroxide by the amebocytes of the scallop,Patinopecten yessoensis (Jay).Dev.Comp.Immunol. 9, 407–417 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Ordas M.C., Novoa B., Figueras A.: Modulation of the chemiluminescence response of Mediterranean mussel (Mytilus galloprovincialis) hemocytes.Fish Shellfish Immunol. 10, 611–622 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Pereira L.S., Oliveira P.L., Barja-Figaldo C., Daffre S.: Production of reactive oxygen species by hemocytes from the cattle tickBoophilus microplus.Exp.Parasitol. 99, 66–72 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Rothe G., Valet G.: Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′,7′-dichlorofluorescein.J.Leukoc.Biol. 47, 440–448 (1990).

    PubMed  CAS  Google Scholar 

  • Slavíkova H., Lojek A., Hamar J., Dušková M., Kubala L., Vondráček J., Číž M.: Total antioxidant capacity of serum increased in early but not late period after intestinal ischemia in rats.Free Rad.Biol.Med. 25, 9–18 (1998).

    Article  PubMed  Google Scholar 

  • Valembois P., Lassegues M.:In vitro generation of reactive oxygen species by free celomic cells of the annelidEisenia foetida andrei: an analysis by chemiluminescence and nitro-blue tetrazolium reduction.Dev.Comp.Immunol. 19, 195–204 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Vowells S.J., Sekhsaria S., Malech H.L., Shalit M., Fleisher T.A.: Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes.J.Immunol.Meth. 178, 89–97 (1995).

    Article  CAS  Google Scholar 

  • Whitten M.M.A., Ratcliffe N.A.:In vitro superoxide activity in the hemolymph of the West Indian leaf cockroach,Blaberus discoidalis.J.Insect Physiol. 45, 667–675 (1999).

    Article  PubMed  Google Scholar 

  • Yamashita M., Iwabuchi K.:Bombyx mori prohemocyte division and differentiation in individual microcultures.J.Insect Physiol. 47, 325–331 (2001).

    Article  PubMed  Google Scholar 

  • Yen G.H., Wu S.C., Duh P.D.: Extraction and identification of antioxidant components from the leaves of mulberry (Morus alba L.).J.Agric.Food Chem. 44, 1687–1690 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lojek.

Additional information

This study was conducted as part of the research project Z 500 4920 and was supported by grant no. S 500 4009 of theGrant Agency of the Academy of Sciences of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyršl, P., Číž, M., Kubala, L. et al. Silkworm (Bombyx mori) hemocytes do not produce reactive oxygen metabolites as a part of defense mechanisms. Folia Microbiol 49, 315–319 (2004). https://doi.org/10.1007/BF02931049

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931049

Keywords

Navigation