Skip to main content
Log in

Membrane fluidity inBacillus subtilis. Physical change and biological adaptation

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The thermotropic behaviour of membrane phospholipids was estimated in intact cells ofBacillus subtilis. Membrane fluidity (microviscosity) of intact cells depended markedly on the ambient temperaturo — increase in cultivation temperature led to an increase in membrane fluidity. Estimated as anisotropy of 1,6-diphenyl-1,3,5-hexatriene fluorescence, a 30 % difference was observed when cells cultivated at 20 and 40 °C were compared. This lack of rigorous homeostatic control of bulk-phase lipid fluidity prompted the reevaluation of the physiological significance of the “homeoviscous adaptation” inB. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • De Mendoza D., Cronan J.E. Jr.: Thermal regulation of membrane lipid fluidity in bacteria.Trends Biochem. Sci. 86, 49–52 (1983).

    Article  Google Scholar 

  • Esser A.F., Souza. K.A.: Correlation between thermal death and membrane fluidity inBacillus stearothermophilus.Proc. Nat. Acad. Sci. USA 71, 4111–4115 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Janoff A.S., Haug A., Mc Groarty E.J.: Relationship of growth temperature and thermotropic phase changes in cytoplasmic and outer membranes fromE. coli.Biochim. Biophys. Acta 555, 56–66 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Janoff A.S., Gupte S., Mc Groarty E.J.: Correlation between temperature range of growth and structural transition in membranes and lipids ofE. coli.Biochim. Biophys. Acta 598, 641–644 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Mc ElhaneyR.N.: The biological significance of alternations in the fatty acid composition of microbial membrane lipids in response to changes in environmental temperature, pp. 255–281 inExtreme Environment (M.R. Heinrich, Ed.). Academic Press, New York 1976.

    Google Scholar 

  • Melchior D.L.: Lipid phase transitions and regulation of membrane fluidity in procaryotes.Curr. Topics Membr. Transp. 17, 263–316 (1983).

    Google Scholar 

  • Reizkr J., Geossowicz N., Barenholz Y.: The effect of growth temperature on the thermotropic behaviour of the membranes of thermophilicBacillus. Composition -3 structure — function relationship.Biochim. Biophys. Acta 815, 268–280 (1985).

    Article  Google Scholar 

  • Rottem S., Markowitz O., Razin S.: Thermal regulation of the fatty acid compozition of lipopolysaccharides and phospholipidsof Proteus mirabilis.Eur. J. Biochem. 85, 451–456 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Sinensky M.: Homeoviscous adaptation — a homeostatic process that regulates the viscosity of membrane lipids inE. coli.Proc. Nat. Acad. Sci. USA 71, 523–525 (1974).

    Article  Google Scholar 

  • Svobodová J., Svoboda P.: Cytoplasmic membrane fluidity in intact living cellsof Bacillus subtilis measured by fluorescence anisotropy of diphenylhexatriene.Folia Microbiol. 33, 1–9 (1988).

    Article  Google Scholar 

  • Thompson G. A. Jr.: Mechanisms of homeoviscous adaptation in membranes, pp. 33–42 inCellular Aclimatization to Environmental Change (A.R. Cossins, P. Sheterline, Eds.). Cambridge University Press, London 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to express their gratitude to Dr. J. Plášek and Dr. P. Jarolím from theDepartment of Biophysics, Faculty of Mathematics and Physics, Charles University, for valuable methodological advice and help in carrying out the experiments described in this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svobodová, J., Svoboda, P. Membrane fluidity inBacillus subtilis. Physical change and biological adaptation. Folia Microbiol 33, 161–169 (1988). https://doi.org/10.1007/BF02925900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02925900

Keywords

Navigation