Skip to main content
Log in

L-Tryptophan synthesis from14C-Anthranilic acid in plants with high and low tryptophan content

  • Published:
Biologia Plantarum

Abstract

The biosynthesis of L-tryptophan (L-trp) from anthranilic acid-14C (AA-14C) in. undamaged organs of the seedlings of kohlrabi and pea, with high L-trp content and ma ze plants, with low L-trp content was compared. As for maize the experiments were carried oiut with normal and opaque-2 phenotypes, both with the seedlings and with the ripening kernels. AA-14C is metabolized in the plants to L-trp pool (i.e. free and bound L-trp, and secondary metabolites) and to glycosyl esters of AA (i.e. to simple glucosyl ester in pea and kohlrabi and more complex glycosides in maize). In maize seedlings L-trp-14C is synthesized relatively less. (40% in the 1st and 2nd leaf and 33% in the 3rd leaf of the total radioactivity of the incorporated AA-14C is transferred into the L-trp-14C pool after 24 h) than in kohlrabi (52% in the hypocotyl and 85% in the cotyledons) and in pea (58% in the 1st and the 2nd internode and 85% in the 3rd and the 4th internode). Thede novo formation of L-trp-14C is stoped earlier in maize (after 5 h) than in kohlrabi (after 15 h). The level of free L-trp-14C is relatively low ill maize (15% and 13% of the total radioactivity of the incorporated AA-14C is converted to free L-trp-14C and remains in this form after 24 h) in comparison with kohlrabi (31% and 60%) and pea (30% and 49%). In spite of this the formation of L-trp-14C from AA-14C is sufficient in maize to incorporate L-trp both into the proteins and into a secondary metabolite that is not yet defined. At the period of seedlings the incorporation in maize of L-trp into the proteins (11% and 10% of the activity of the incorporated AA-14C) is comparable with that in kohlrabi (11% and 17%), and it is maximum in pea (29% and 36%). Maize, at the stage of germination, thus forms proteins rich in L-trp. The formation of free L-trp is approximately ten times lower in ripening kernels and in the leaves adjacent to the ear and it further decreases in the course of the ripening of the kernels. Although the activity of the biosynthesis of the AA-14C → L-trp-14C pathway is relatively lower in maize than in kohlrabi and pea, this pathway is most responsible for the differences in the content of L-trp in these plants.

Neither amitrol nor histidine affected the biosynthesis of L-trp in kohlrabi; the interaction of the biosynthetic pathways of L-trp and histidine known in microorganisms is thus not important in a higher plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belser, W. L., Muephy, J. B., Delmer, D. P., Mills, S. E.: End-product control of tryptophan biosynthesis in extracts and intact cells of the highor plantNicotiana tabacum var. Wisconsin 38. — Biochira. biophys. Acta273: 1–10, 1971.

    Article  Google Scholar 

  • Carsiotts, M., Jones, R. F., Lacy, A. M., Cleary, T. J., Fankhauser, D. B.: Histidine-mcdiated control of tryptophan biosynthetic enzymes inNeurospora crassa. — J. Bacteriol.104: 98 to 100, 1970.

    Google Scholar 

  • Eder, J., Kutáček, M.: Effect of radiation on the biosynthesis of L-tryptophan from14C-authranilic acid in kohlrabi(Brassica oleracea L. var. gongylodes L.) — Biol. Plant.14: 390 to 398. 1972.

    Article  Google Scholar 

  • Gilchrist, D. G., Woodin, I. S., Johnson, M. L., Kosuge, T.: Regulation of aromatic amino acid biosynthesis in higher plants. I. Evidence for a regulatory form of chorismate mutase in etiolated mung bean seedlings. — Plant Physiol.49: 52–57, 1972.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grossk, W., Eickhoff, F.: Lokalisation von Tryptophan-Synthetase in Etioplasten vonPitum satitivum L. — Planta118: 25–34, 1974.

    Article  Google Scholar 

  • Grosse, W., Witzsche, H.: Nachweis und Lokalisation von Tryptophan-Synthetase in Samcn vonJuqlans regia L. — Planta111: 65–71. 1973.

    Article  CAS  PubMed  Google Scholar 

  • Horak, V.: Tryptophan synthase activity, tryptophan and serine contents in pea(Pisum sativum L.) plants during their ontogenesis. — Biol. Plant.18: 442–449, 1976.

    Article  CAS  Google Scholar 

  • Horak, Y., Stefl, M., Trcka, I.: The Effect of free amino acids and related compounds on the activity of plant enzymes II. Inhibition of tryptophan-synthase (4.2.1.20) from the plants ofPisum sativum L. by amino acids and growth substances. — Collection Czechoslov. Chem. Commun.38: 3532–3538, 1973.

    Article  CAS  Google Scholar 

  • Huisman, O. C., Kosuge, T.: Regulation of aromatic amino acid biosynthesis in higher plant II. 3-deoxy-arabino-heptulosonic acid 7-phosphato synthctase from cauliflower. — J. biol. Chom.249: 6842–6848, 1974.

    CAS  Google Scholar 

  • Ivanko, S., Bbanyik, A., Javor, A.: The chromatographic characterization ofZea mays kernel proteins in the course of ontogenesis. — In press.

  • Javor, A., Ivanko, Š.: [Comparison of the amino acid composition of the corn of the maize mutant opaque-2 and its hybrid with the line W 64 A 162.] In Slovak. — Pol’nohospodarstvo21: 405–413, 1975.

    CAS  Google Scholar 

  • Kefeli, V., Kutáček, M., Tureckaya, R. Ch.: [The regulation of indole auxin biosynthesis.] In Russ. — In: Rost i Gormonalnaya Regulatsiya Zhiznodeyatel'nosti Rasteniï. Pp. 35–46. Izd. Akad. Nauk SSSR, Irkutsk 1974.

    Google Scholar 

  • Kutáček.M., Galston.A. Yv.: The Metabolism of14C-Iabelled isatin and anthranilate inPisum stem sections. — Plant Physiol.43: 1793–1798, 1968.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kutáček, M., Kefeli, V.: Metabolism of tryptophan in plants. Biogenesis of indolic compound from I)-and L-tryptophan in segments of etiolated seedlings of cabbage, corn and pea. — Biol. Plant.12: 145–158, 1970.

    Article  Google Scholar 

  • Kutáček, M., Kefeli, V., Vacková, K.: A Study on the regulation of tryptophan pool by sorme metabolites of the aromates pathway. — Acta Univ. Nicolai Copcrnici (Toruń) Biologia18: 187–193, 1976.

    Google Scholar 

  • Kutáček, M., Králová, M., Stránský, P.: Tryptophan transaminase inZea mays plants. — In:Nchreiber, K., Schütte, H. R., Sembdner, G. (ed.): Biochemistry and Chemistry of Plant Growth Regulators. Pp. 325–332. Institute of Plant Biochemistry, Halle 1975.

    Google Scholar 

  • Kutáčkjc, M., Schraudolf, H.: Metabolismus14C-markicrter Anthranils00E4;ure in Hypokotylsegmenten von Senf(Sinapis alba L.). Procecdings of the 2nd Intornat. Symp. on Isothiocyariates, Smolenice 1969. Pp. 163–173. SAV, Bratislava 1971.

    Google Scholar 

  • Langer, I. Stransky, P., Kutáček, M.: Differences of cytoplasmic transaminase activity in nonna,l and opaque-2 maize(Zen mays L.) seedlings. — Thcor. appl. Genetics46: 19–23, 1975.

    Article  CAS  Google Scholar 

  • Mkrtz, E., Bates, L., Nelson, O.: Mutant gene that changes composition and increases lysine content of maize endosperm. — Science145: 279–280. 1964.

    Article  Google Scholar 

  • Piskornik, Z., Bandubski, R. S.: Purification and partial characterization of a glucan containing indole-3-acetie acid. — Plant Physiol.50: 176–182, 1972.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prockázka, S.: [The distribution of photosynthates in winter wheat at the stage of grain formation.] In Czech. — Thesis. Agricultural University, Brno 1974.

    Google Scholar 

  • Řeháček, Z., Kozová, J., Řičicová, A., KašLík, J., Sajdl, P., Švarc, S., Basappa, S. C.: Role of endogenous tryptophan during submerged fermentation of ergot alkaloids. — FoL microbiol.16: 35–40, 1971.

    Article  Google Scholar 

  • Roth, C. W., Nester, E. W.: Co-ordinate control of tryptophan histidine and tyrosine enzyme synthesis inBacillus subtilis. — J. mol. Biol.62: 577–589, 1971.

    Article  CAS  PubMed  Google Scholar 

  • Ueda, M., Bandukski, S. R.: A quantitative estimation of alkali-labile indole-3-acetic acid compounds in dormant and germinating maize kernels. — Plant Physiol.44: 1175–1181, 1969.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wegnee, L. A., Wilkelmann, H.: Die Verbrennung14C- oder3H-haltiger Proben als Vorstufe zur LS-Messung. Erste Ergebnisse mit einem neuen Automaten. — Atompraxis16: 19 to 25, 1970.

    Google Scholar 

  • Widholm, J. M.: Tryptophan biosynthesis inNicotlana labacum and Daucus carotacell cultures. Site of action of inhibitory tryptophan analogs. — Bioehim. biophys. Acta261: 44–51, 1972.

    Article  CAS  Google Scholar 

  • Widholm, J. M.: Evidence for compartmentation of tryptophan in cultured plant tissues: Free tryptophan levels and inhibition of anthranilate synthetase. — Physiol. Plant.30: 323–326, 1974.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutáček, M., Eder, J., Kbfeli, V.I. et al. L-Tryptophan synthesis from14C-Anthranilic acid in plants with high and low tryptophan content. Biol Plant 20, 34–46 (1978). https://doi.org/10.1007/BF02922927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922927

Keywords

Navigation