Skip to main content

Tryptophan: A Precursor of Signaling Molecules in Higher Plants

  • Chapter
  • First Online:
Hormones and Plant Response

Part of the book series: Plant in Challenging Environments ((PCE,volume 2))

Abstract

Tryptophan (Trp) is an aromatic amino acid which is synthesized through the shikimate/chorismate pathway. Behind that this amino acid is part of proteins; the relevance of Trp resides as a precursor of secondary metabolism which includes relevant molecules such as auxin (indole-3-acetic acid, IAA), serotonin and melatonin which have a wide range of functions in higher plants including physiological processes such as seed germination, root growth and development, senescence, flowering or fruit ripening as well as in the mechanism of response against biotic and abiotic stresses. The main goal of this chapter is to provide a comprehensive overview of these pleiotropic signalling molecules and its implication in physiological processes as well as stress environmental conditions in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aghdam MS, Fard JR (2017) Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria×anannasa cv. Selva) by enhancing GABA shunt activity. Food Chem 221:1650–1657

    Article  CAS  PubMed  Google Scholar 

  • Aghdam MS, Luo Z, Li L, Jannatizadeh A, Fard JR, Pirzad F (2020) Melatonin treatment maintains nutraceutical properties of pomegranate fruits during cold storage. Food Chem 303:125385

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Su W, Kamran M, Ahmad I, Meng X, Wu X, Javed T, Han Q (2020) Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions. Protoplasma. https://doi.org/10.1007/s00709-020-01491-3

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trend Plant Sci 17:73–90

    Article  CAS  Google Scholar 

  • Alvarez B, Rubbo H, Kirk M, Barnes S, Freeman BA, Radi R (1996) Peroxynitrite-dependent tryptophan nitration. Chem Res Toxicol 9:390–396

    Article  CAS  PubMed  Google Scholar 

  • Anisimov VN, Popovich IG, Zabezhinski MA, Anisimov SV, Vesnushkin GM, Vinogradova IA (2006) Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta 1757:573–589

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trend Plant Sci 24:38–48

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2020) Melatonin in flowering, fruit set and fruit ripening. Plant Reprod https://doi.org/10.1007/s00497-020-00388-8

  • Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61:426–437

    Article  CAS  PubMed  Google Scholar 

  • Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P (2020) Serotonin in animal cognition and behavior. Int J Mol Sci 21:1649

    Article  PubMed Central  CAS  Google Scholar 

  • Badawy AA (2017) Tryptophan availability for kynurenine pathway metabolism across the life span: control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology 112:248–263

    Article  CAS  PubMed  Google Scholar 

  • Burow M, Halkier BA (2017) How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as case study. Curr Opin Plant Biol:142–147

    Google Scholar 

  • Cao S, Shao J, Shi L, Xu L, Shen Z, Chen W, Yang Z (2018) Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage. Sci Rep 8:806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Celenza JL (2001) Metabolism of tyrosine and tryptophan—new genes for old pathways. Curr Opin Plant Biol 4:234–240

    Article  CAS  PubMed  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Palma JM, del Río LA, Barroso JB (2013) Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci 4:29

    Google Scholar 

  • Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y, Ojha S, DuBois J, Ballou D, Zhao Y (2013) The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase. J Biol Chem 288:1448–1457

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Li J, Harmens H, Zheng X, Zhang C (2020) Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiol Biochem 149:86–95

    Article  CAS  PubMed  Google Scholar 

  • Ding P, Ding Y (2020) Stories of salicylic acid: a plant defense hormone. Trend Plant Sci 25:549–565

    Article  CAS  Google Scholar 

  • Ehrenshaft M, Deterding LJ, Mason RP (2015) Tripping up Trp: modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radic Biol Med 89:220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enríquez-Valencia AJ, Vázquez-Flota FA, Ku-Cauich JR, Escobedo-García Medrano RM (2018) Differentially expressed genes during the transition from early to late development phases in somatic embryo of banana (Musa spp. AAB group, Silk subgroup) cv. Manzano. Plant Cell Tissue Organ Cult 136:289–302

    Article  CAS  Google Scholar 

  • Erland LA, Turi CE, Saxena PK (2016) Serotonin: An ancient molecule and an important regulator of plant processes. Biotechnol Adv 34:1347–1361

    Article  CAS  PubMed  Google Scholar 

  • Erland LAE, Yasunaga A, Li ITS, Murch SJ, Saxena PK (2019) Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. J Pineal Res 66:e12527

    Article  PubMed  CAS  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16

    Article  CAS  PubMed  Google Scholar 

  • Galano A, Castañeda-Arriaga R, Pérez-González A, Tan DX, Reiter RJ (2016) Phenolic melatonin-related compounds: their role as chemical protectors against oxidative stress. Molecules 21:1442

    Article  PubMed Central  CAS  Google Scholar 

  • Gao H, Lu Z, Yang Y, Wang S, Yang T, Cao M (2018) Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chem 245:659–666

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Ma W, Lyu X, Cao X, Yao Y (2020) Melatonin may increase disease resistance and flavonoid biosynthesis through effects on DNA methylation and gene expression in grape berries. BMC Plant Biol 20:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong B, Miao L, Kong W, Bai JG, Wang X, Wei M, Shi Q (2014) Nitric oxide, as a downstream signal, plays vital role in auxin induced cucumber tolerance to sodic alkaline stress. Plant Physiol Biochem 83:258–266

    Article  CAS  PubMed  Google Scholar 

  • González-Gómez D, Lozano M, Fernández-León MF, Ayuso MC, Bernalte MJ, Rodríguez AB (2009) Detection and quantification of melatonin and serotonin in eight sweet cherry cultivars (Prunus avium L.). Eur Food Res Technol 229:223–229

    Article  CAS  Google Scholar 

  • Hardeland R (2015) Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. J Exp Bot 66:627–646

    Article  CAS  PubMed  Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiruma K (2019) Roles of plant-derived secondary metabolites during interactions with pathogenic and beneficial microbes under conditions of environmental stress. Microorganisms 7:362

    Article  CAS  PubMed Central  Google Scholar 

  • Hou BZ, Li CL, Han YY, Shen YY (2018) Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. BMC Plant Biol 18:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54:481–495

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Ogara A, Katsumata T, Umemura T, Nishikawa A, Iwasaki Y, Ito R, Saito K, Hirose M, Nakazawa H (2007) Quantification of nitrated tryptophan in proteins and tissues by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 44:150–159

    Article  CAS  PubMed  Google Scholar 

  • Islam J, Shirakawa H, Nguyen TK, Aso H, Komai M (2016) Simultaneous analysis of serotonin, tryptophan and tryptamine levels in common fresh fruits and vegetables in Japan using fluorescence HPLC. Food Biosci 13:56–59

    Article  CAS  Google Scholar 

  • Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, Ahammed GJ, Kabir K, Roy R (2020) Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf 197:110593

    Article  CAS  PubMed  Google Scholar 

  • Johns JR, Platts JA (2014) Theoretical insight into the antioxidant properties of melatonin and derivatives. Organ Biomol Chem 12:7820–7827

    Article  CAS  Google Scholar 

  • Kang K, Park S, Kim YS, Lee S, Back K (2009a) Biosynthesis and biotechnological production of serotonin derivatives. Appl Microbiol Biotechnol 83:27–34

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Kim YS, Park S, Back K (2009b) Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol 150:1380–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki H, Tominaga M, Shigenaga A, Kamo A, Kamata Y, Iizumi K, Kimura U, Ogawa H, Takamori K, Yamakura F (2014) Importance of tryptophan nitration of carbonic anhydrase III for the morbidity of atopic dermatitis. Free Radic Biol Med 73:75–83

    Article  CAS  PubMed  Google Scholar 

  • Khan MY, Prakash V, Yadav V, Chauhan DK, Prasad SM, Ramawat N, Singh VP, Tripathi DK, Sharma S (2019) Regulation of cadmium toxicity in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Plant Physiol Biochem 142:193–201

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Numan M, Khan AL, Lee IJ, Imran M, Asaf S, Al-Harrasi A (2020) Melatonin: awakening the defense mechanisms during plant oxidative stress. Plants (Basel) 9:407

    Article  CAS  Google Scholar 

  • Korkmaz A, Deger O, Cuci Y (2014) Profiling the melatonin content in organs of the pepper plant during different growth stages. Sci Hortic 172:242–247

    Article  CAS  Google Scholar 

  • Lecube ML, Noriega GO, Santa Cruz DM, Tomaro ML, Batlle A, Balestrasse KB (2014) Indole acetic acid is responsible for protection against oxidative stress caused by drought in soybean plants: the role of heme oxygenase induction. Redox Rep 19:242–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lefevere H, Bauters L, Gheysen G (2020) Salicylic acid biosynthesis in plants. Front Plant Sci 11:338

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Tan DX, Liang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66:669–680

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Shen Y, Ni Z, Wang Q, Lei Z, Xu N, Deng Q, Lin L, Wang J, Lv X, Xia H (2018) Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Front Plant Sci 9:426

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Ding Y, Wang F, Ye Y, Zhu C (2016) Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep 35:719–731

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Shabala S, Zhang J, Ma G, Chen D, Shabala L, Zeng F, Chen ZH, Zhou M, Venkataraman G, Zhao Q (2020a) Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K(+) transporters and K(+) homeostasis. Plant Cell Environ https://doi.org/10.1111/pce.13759

  • Liu G, Zhang Y, Yun Z, Hu M, Liu J, Jiang Y, Zhang Z (2020b) Melatonin enhances cold tolerance by regulating energy and proline metabolism in litchi fruit. Foods 9:E454

    Article  PubMed  CAS  Google Scholar 

  • Ludwing-Müller J, Lüthen H (2015) From facts and false routes: how plant hormone research developed. J Plant Growth Regul 34:697–701

    Article  CAS  Google Scholar 

  • Ly D, Kang K, Choi JY, Ishihara A, Back K, Lee SG (2008) HPLC analysis of serotonin, tryptamine, tyramine, and the hydroxycinnamic acid amides of serotonin and tyramine in food vegetables. J Med Food 11:385–389

    Article  CAS  PubMed  Google Scholar 

  • Lynch JH, Natalia Dudareva N (2020) Aromatic amino acids: a complex network ripe for future exploration. Trend Plant Sci 25:670-681

    Google Scholar 

  • Lynch JH, Qian Y, Guo L, Maoz I, Huang XQ, Garcia AS, Louie G, Bowman ME, Noel JP, Morgan JA, Dudareva N (2020) Modulation of auxin formation by the cytosolic phenylalanine biosynthetic pathway. Nat Chem Biol 16:850–856

    Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:18512–18517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matuszak ZK, Reszka J, Chignell CF (1997) Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radic Biol Med 23:367–372

    Article  CAS  PubMed  Google Scholar 

  • Matuszak Z, Bilska MA, Reszka KJ, Chignell CF, Bilski P (2003) Interaction of singlet molecular oxygen with melatonin and related indoles. Photochem Photobiol 78:449–455

    Article  CAS  PubMed  Google Scholar 

  • Monti JM (2011) Serotonin control of sleep-wake behavior. Sleep Med Rev 15:269–281

    Article  PubMed  Google Scholar 

  • Morffy N, Strader LC (2020) Old Town Roads: routes of auxin biosynthesis across kingdoms. Curr Opin Plant Biol 55:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S (2019) Melatonin and its protective role against biotic stress impacts on plants. Biomol Ther 10:54

    Google Scholar 

  • Mukherjee S (2018) Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiol Biochem 132:33–45

    Google Scholar 

  • Mukherjee S, David A, Yadav S, Baluška F, Bhatla SC (2014) Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant 152:714–728

    Article  CAS  PubMed  Google Scholar 

  • Namdjoyan S, Soorki AA, Elyasi N, Kazemi N, Simaei M (2020) Melatonin alleviates lead-induced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology 29:108–118

    Article  CAS  PubMed  Google Scholar 

  • Nawaz MA, Huang Y, Bie Z, Ahmed W, Reiter RJ, Niu M, Hameed S (2016) Melatonin: current status and future perspectives in plant science. Front Plant Sci 6:1230

    Article  PubMed  PubMed Central  Google Scholar 

  • Noda Y, Mori A, Liburdy R, Packer L (1999) Melatonin and its precursors scavenge nitric oxide. J Pineal Res 27:159–163

    Article  CAS  PubMed  Google Scholar 

  • Ohashi K, Kawai S, Murata K (2013) Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae. Eukary Cell 12:648–653

    Article  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palego L, Betti L, Rossi A, Giannaccini G (2016) Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acid 2016:8952520

    Google Scholar 

  • Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ, Yun BW (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12:e0173203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedras MS, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381–1405

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J (2011) Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol 52:490–508

    Article  CAS  PubMed  Google Scholar 

  • Pérez-González A, Castañeda-Arriaga R, Álvarez-Idaboy JR, Reiter RJ, Galano A (2019) Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. J Pineal Res 66:e12539

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Llorca M, Muñoz P, Müller M, Munné-Bosch S (2019) Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Front Plant Sci 10:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    Article  CAS  Google Scholar 

  • Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J, Chavez Montes RA, Lozano-Sotomayor P, Herrera-Ubaldo H, Gonzalez-Aguilera KL, Ballester P, Ripoll JJ, Ezquer I, Paolo D, Heyl A, Colombo L, Yanofsky MF, Ferrandiz C, Marsch-Martínez N, de Folter S (2017) The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genet 13:e1006726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riga P, Medina S, García-Flores LA, Gil-Izquierdo Á (2014) Melatonin content of pepper and tomato fruits: effects of cultivar and solar radiation. Food Chem 156:347–352

    Article  CAS  PubMed  Google Scholar 

  • Rossi F, Miggiano R, Ferraris DM, Rizzi M (2019) The synthesis of kynurenic acid in mammals: An updated kynurenine aminotransferase structural KATalogue. Front Mol Biosci 6:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sami A, Shah FA, Abdullah M, Zhou X, Yan Y, Zhu Z, Zhou K (2020) Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L. Plant Biol (Stuttg) https://doi.org/10.1111/plb.13093

  • Sanchez-Vallet A, Ramos B, Bednarek P, López G, Piślewska-Bednarek M, Schulze-Lefert P, Molina A (2010) Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J 63:115–127

    CAS  PubMed  Google Scholar 

  • Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-MarcosM LO (2015) Nitric oxide (NO) and phytohormones crosstalk during early plant development. J Exp Bot 66:2857–2868

    Article  CAS  PubMed  Google Scholar 

  • Sarafi E, Tsouvaltzis P, Chatzissavvidis C, Siomos A, Therios I (2017) Melatonin and resveratrol reverse the toxic effect of high boron (B) and modulate biochemical parameters in pepper plants (Capsicum annuum L.). Plant Physiol Biochem 112:173–182

    Article  CAS  PubMed  Google Scholar 

  • Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    Article  CAS  PubMed  Google Scholar 

  • Scaiano JC (1995) Exploratory laser flash photolysis study of free radical reactions and magnetic field effects in melatonin chemistry. J Pineal Res 19:189–195

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M (2020) The role of salicylic acid in plants exposed to heavy metals. Molecules 25:540

    Article  CAS  PubMed Central  Google Scholar 

  • Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA (2019a) Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int J Mol Sci 20:353

    Article  PubMed Central  CAS  Google Scholar 

  • Siddiqui MH, Alamri S, Alsubaie QD, Ali HM, Ibrahim AA, Alsadon A (2019b) Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings. Ecotoxicol Environ Saf 180:656–667

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Khan MN, Corpas FJ, Alsubaie QD, Ali HM, Ahmad P, Kalaji HM (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater 398:122882

    Article  CAS  PubMed  Google Scholar 

  • Simlat M, Szewczyk A, Ptak A (2020) Melatonin promotes seed germination under salinity and enhances the biosynthesis of steviol glycosides in Stevia rebaudiana Bertoni leaves. PLoS One 15:e0230755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Chandrawat KS (2017) Role of phytoalexins in plant disease resistance. Int J Curr Microbiol App Sci 6:125–129

    Article  CAS  Google Scholar 

  • Singh H, Bhat JA, Singh VP, Corpas FJ, Yadav SR (2021) Auxin metabolic network regulates the plant response to metalloids stress. J Hazard Mater 405:124250

    Google Scholar 

  • Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T, Hanada K, Kinoshita-Tsujimura K, Yu H, Dai X, Takebayashi Y, Takeda-Kamiya N (2015) Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol 56:1641–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumar P, Legué V, Vayssières A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ 36:909–919

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Li R, Weeda S, Zhao B, Ren S, Guo YD (2015) Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J Exp Bot 66:657–668

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Feng F, Liu J, Zhao Q (2017) The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice. Front Plant Sci 8:2169

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun C, Lv T, Huang L, Liu X, Jin C, Lin X (2020) Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat. J Pineal Res:e12642

    Google Scholar 

  • Tan DX, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, Mayo JC, Kohen R, Allegra M, Hardeland R (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–197

    Article  CAS  PubMed  Google Scholar 

  • Ternes CM, Schönknecht G (2014) Gene transfers shaped the evolution of de novo NAD+ biosynthesis in eukaryotes. Genome Biol Evol 6:2335–2349

    Google Scholar 

  • Tijero V, Muñoz P, Munné-Bosch S (2019) Melatonin as an inhibitor of sweet cherries ripening in orchard trees. Plant Physiol Biochem 140:88–95

    Article  CAS  PubMed  Google Scholar 

  • Tzin V, Galili G, Aharoni A (2012) Shikimate pathway and aromatic amino acid biosynthesis. Wiley, Chichester. 

    Book  Google Scholar 

  • van Butselaar T, Van den Ackerveken G (2020) Salicylic acid steers the growth-immunity tradeoff. Trend Plant Sci 25:566–576

    Article  CAS  Google Scholar 

  • Varghese N, Alyammahi O, Nasreddine S, Alhassani A, Gururani MA (2019) Melatonin positively influences the photosynthetic machinery and antioxidant system of Avena sativa during salinity stress. Plants (Basel) 8:610

    Article  CAS  Google Scholar 

  • Voigt JP, Fink H (2015) Serotonin controlling feeding and satiety. Behav Brain Res 277:14–31

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. J Pineal Res 53:11–20

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Shi XC, Wang R, Wang HL, Liu F, Laborda P (2020) Melatonin in fruit production and postharvest preservation: a review. Food Chem 320:126642

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 65:e12500

    Article  PubMed  CAS  Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and yuccas in Arabidopsis. Proc Natl Acad Sci U S A 108:18518–18523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia H, Shen Y, Shen T, Wang X, Zhang X, Hu P, Liang D, Lin L, Deng H, Wang J, Deng Q, Lv X (2020) Melatonin accumulation in sweet cherry and its influence on fruit quality and antioxidant properties. Molecules 25:753

    Article  CAS  PubMed Central  Google Scholar 

  • Xiao K, Chen J, He Q, Wang Y, Shen H, Sun L (2020) DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. J Exp Bot 71:1928–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Yue Q, Xiang G, Bian F, Yao Y (2007) Melatonin promotes ripening of grape berry via increasing the levels of ABA, H2O2, and particularly ethylene. Hortic Res 5:41

    Article  CAS  Google Scholar 

  • Yamakura F, Ikeda K (2006) Modification of tryptophan and tryptophan residues in proteins by reactive nitrogen species. Nitric Oxide 14:152–161

    Article  CAS  PubMed  Google Scholar 

  • Yamakura F, Matsumoto T, Fujimura T, Taka H, Murayama K, Imai T, Uchida K (2001) Modification of a single tryptophan residue in human Cu, Zn-superoxide dismutase by peroxynitrite in the presence of bicarbonate. Biochim Biophys Acta 1548:38–46

    Article  CAS  PubMed  Google Scholar 

  • Yamakura F, Matsumoto T, Taka H, Fujimura T, Murayama K (2003) 6-Nitrotryptophan: a specific reaction product of tryptophan residue in human Cu, Zn-SOD treated with peroxynitrite. Adv Exp Med Biol 527:745–749

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Hu X, Huang J (2014) Origin of plant auxin biosynthesis. Trend Plant Sci 19:764–770

    Article  CAS  Google Scholar 

  • Zernova OV, Lygin AV, Pawlowski ML, Hill CB, Hartman GL, Widholm JM, Lozovaya VV (2014) Regulation of plant immunity through modulation of phytoalexin synthesis. Molecules 19:7480–7496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhan H, Nie X, Zhang T, Li S, Wang X, Du X, Tong W, Song W (2019) Melatonin: a small molecule but important for salt stress tolerance in plants. Int J Mol Sci 20pii:E709

    Article  CAS  Google Scholar 

  • Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S, Zhao B, Guo YD (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front Plant Sci 7:197

    PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhang HJ, Sun QQ, Cao YY, Li X, Zhao B, Wu P, Guo YD (2017) Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Sci Rep 7:503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research work is supported by a European Regional Development Fund-cofinanced grant from the Ministry of Economy and Competitiveness/Science and Innovation (PID2019-103924GB-I00), the Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) (P18-FR-1359) and Junta de Andalucía (group BIO192), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Corpas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corpas, F.J., Gupta, D.K., Palma, J.M. (2021). Tryptophan: A Precursor of Signaling Molecules in Higher Plants. In: Gupta, D.K., Corpas, F.J. (eds) Hormones and Plant Response. Plant in Challenging Environments, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-77477-6_11

Download citation

Publish with us

Policies and ethics