Skip to main content
Log in

Thermal degradation of cereal straws in air and nitrogen

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The termogravimetric behavior of four cereal straws (wheat, barley, oats, and rye) was examined at three heating rates (10, 20, and 50°C/min) in air and nitrogen atmospheres. The thermal degradation rate in active and passive pyrolysis zones, the initial degradation temperature, and the residual weight at 600 °C were determined for these straws in both atmospheres. Increasing the heating rate increased the thermal degradation rate, and decreased both the initial degradation temperature and the residual weight at 600 °C. The higher the cellulosic content of the straw, the higher the thermal degradation rate and the initial degradation temperature. Also, higher ash content in the straw resulted in higher residual weight at 600 °C. The thermal degradation rate in active pyrolysis zone was lower in air atmosphere than in nitrogen atmosphere, whereas the thermal degradation rate in passive pyrolysis zone and the residual weight at 600 °C were higher in nitrogen atmosphere than in air atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peil, J. E. (1980), Evaluation of a system utilizing biomass (straw) as a fuel for crop drying and heating on a farm. Proceedings of the Second Canadian Bioenergy R & D Seminar, National Research Council of Canada, Ottawa, Ontario, pp. 11–16.

    Google Scholar 

  2. Colwell, H. T. M. (1983), The potential for a sustained energy for combusti- ble crop residues in the Canadian Agriculture and Food System: A National Assessment. Technical Report, Energy Analysis and Policy Division, Agriculture Canada, Ottawa, Ontario.

    Google Scholar 

  3. Nemetz, I. (1983), Economics of crop residue gasification system: Economic analysis and research priorities. Technical Report, Energy Analysis and Policy Division, Agriculture Canada, Ottawa, Canada.

    Google Scholar 

  4. Strehler, A. (1982), Technology of heat and power production from solid fuel. Proceedings of the International Conference on Energy From Biomass (Strub, A., P. Chartier, and G. Schleser, eds.). Applied Science Publishers, Barking, Essex, pp. 346–358.

    Google Scholar 

  5. Ebling, J. M. and Jenkins, B. M. (1985),Trans. ASAE 28(3), 898–902.

    Google Scholar 

  6. Ghaly, A. E., Al-Taweel, A. M, Hamdullaphur, F., and Ergudenler, A. (1989). Thermogravimetric characteristics of straws. Proceedings of the Seventh Canadian Bioenergy R & D Seminar, National Research Council of Canada, Ottawa, Ontario, pp. 647–654.

    Google Scholar 

  7. Stacey, M. (1976),Agri. Progress 51, 69–78.

    Google Scholar 

  8. Theander, O. (1985), InFundamentals of Thermochemical Biomass Conversion, Overend, R. P., Mile, T. A., and Mudge, L. K., eds., Elsevier, New York, pp. 35–60.

    Google Scholar 

  9. Glasser, W. G. (1985), InFundamentals of Thermochemical Biomass Conversion, Overend, R. P., Mile, T. A., and Mudge, L. K., eds., Elsevier, New York, pp. 61–76.

    Google Scholar 

  10. Lipska-Quinn, A. E., Zeronian, S. H., and McGee, K. M. (1985), InFunda- mentals of Thermochemical Biomass Conversion, Overend, R. P., Mile, T. A., and Mudge, K. K., eds., Elsevier, New York, pp. 453–471.

    Google Scholar 

  11. Shafizadeh, F. (1968). Pyrolysis and combustion of cellulosic materials.Adv. Carbohydrate Chem. 23, 419.

    CAS  Google Scholar 

  12. Soltes, E. J. and Elder, T. J. (1981), InOrganic Chemical from Biomass, Goldstain, I. S., ed., CRC Press, Boca Raton, Florida, pp. 63–99.

    Google Scholar 

  13. Milne, T. (1981), InBiomass Gasification Principles and Technology, Noyes Data Corporation, Park Ridge, New Jersey, pp. 91–118.

    Google Scholar 

  14. Shafizadeh, F. and DeGroot, W. F. (1976), InThermal Uses and Properties of Carbohydrates and Lignins, Academic, New York, pp. 1–6.

    Google Scholar 

  15. MacKay, G. D. M. (1968), Effect of inorganic salts on the pyrolysis of cellulose.Forest Products 18, 71.

    Google Scholar 

  16. Broido, A. (1966),Pyrodynamics 4, 243.

    CAS  Google Scholar 

  17. Fung, D. P. C. and Graham, R. (1979), The role of catalysis in wood gasification. Paper presented at the 198th Meeting of the American Chemical Engineering Society, Washington, D.C.

  18. Hallen, R. T., Sealock, L. J., and Cuello, R. (1985), InFundamentals of Thermochemical Biomass Conversion, Overend, R. P., Mile, T. A., and Mudge, L. K., eds., Elsevier, New York, pp. 157–166.

    Google Scholar 

  19. Nassar, M. M., Bilgesy, A., and MacKay, G. D. M. (1986),Wood and Fiber Science 18(1), 3–10.

    CAS  Google Scholar 

  20. Theander, O. and Aman, P. (1978),Swedish J. Agric. Res. 8, 189–194.

    CAS  Google Scholar 

  21. Shafizadeh, F. and McGinnis, G. D. (1970),Carbohydrate Res. 16, 273–282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaly, A.E., Ergudenler, A. Thermal degradation of cereal straws in air and nitrogen. Appl Biochem Biotechnol 28, 111–126 (1991). https://doi.org/10.1007/BF02922593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922593

Index Entries

Navigation