Skip to main content
Log in

From no-confidence to nitric oxide acknowledgement: A story of bacterial nitric-oxide reductase

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The review briefly summarizes current knowledge of the bacterial nitric-oxide reductase (NOR). This membrane enzyme consists of two subunits, the smaller one contains hæm C and the larger one two hæms B and nonhæm iron. The protein sequence and structure of metal centres demonstrate the relationship of NOR to the family of terminal oxidases. The binuclear Fe−Fe reaction centre, consisting of antiferromagnetically coupled hæm B and nonhæm iron, is analogous to Fe−Cu centre of terminal oxidases. The data on the structure and function of NOR and terminal oxidases suggest that all these enzymes are closely evolutionally related. The catalytic properties are determined most of all by the relatively high toxicity of nitric oxide as a substrate and the resulting strong need to maintain its concentration at nanomolar levels. A kinetic model of the action of the enzyme comprises substrate inhibition. NOR does not conserve the free energy of nitric oxide reduction because it does not work as a proton pump and, moreover, the protons coming into the reaction are taken from periplasm,i.e. they do not cross the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP:

3-chlorophenylhydrazono-malononitrile (‘carbonyl cyanide 3-chlorophenylhydrazone’)

COX:

aa 3-cytochrome-c oxidase

NIR:

nitrite reductase

NOR:

nitric-oxide reductase

PMS:

N-methylphenazonium methanesulfonate (‘phenazine methosulfate’)

TMPD:

N,N,N′,N′-tetramethyl-1,4-benzendiamine

References

  • Bell L.C., Richardson D.J., Ferguson S.J.: Identification of nitric oxide reductase activity inRhodobacter capsulatus: the electron transport pathway can either use or bypass both cytochromec 2 and the cytochromebc 1 complex.J. Gen. Microbiol. 138, 437–443 (1992).

    PubMed  CAS  Google Scholar 

  • de Boer A.P., van der Oost J., Reijnders W.N., Westerhoff H.V., Stouthamer A.H. van Spanning R.J.: Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase fromParacoccus denitrificans.Eur. J. Biochem. 242, 592–600 (1996).

    Article  PubMed  Google Scholar 

  • Braun C., Zumft W.G.: Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway ofPseudomonas stutzeri at nitric oxide.J. Biol. Chem. 266, 22785–22788 (1991).

    PubMed  CAS  Google Scholar 

  • Carr G.J., Ferguson S.J.: The nitric oxide reductase ofParacoccus denitrificans.Biochem. J. 269, 423–429 (1990).

    PubMed  CAS  Google Scholar 

  • Carr G.J., Page M.D., Ferguson, S.J.: The energy-conserving nitric-oxide-reductase system inParacoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.Eur. J. Biochem. 179, 683–692 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Cheesman M.R., Zumft W.G.: The MCD and EPR of the heme centers of nitric oxide reductase fromPseudomonas stutzeri; evidence that the enzyme is structurally related to the heme-copper oxidases.Biochemistry 37, 3994–4000 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Cramm R., Siddiqui R.A., Friedrich B.: Two isofunctional nitric oxide reductases inAlcaligenes eutrophus H16.J. Bacteriol. 179, 6769–6777 (1997).

    PubMed  CAS  Google Scholar 

  • Dermastia M., Turk T., Hollocher T.C.: Nitric oxide reductase. Purification fromParacoccus denitrificans with use of a single column and some characteristics.J. Biol. Chem. 266, 10899–10905 (1991).

    PubMed  CAS  Google Scholar 

  • Ferguson S.J.: Denitrification and its control.Antonie Van Leeuwenhoek 66, 89–110 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T., Fukumori Y.: Cytochromecb-type nitric oxide reductase with cytochromec oxidase activity fromParacoccus denitrificans ATCC 35512.J. Bacteriol. 178, 1866–1871 (1996).

    PubMed  CAS  Google Scholar 

  • Garber E.A., Castignetti D., Hollocher T.C.: Proton translocation and proline uptake associated with reduction of nitric oxide by denitrifyingParacoccus denitrificans.Biochem. Biophys. Res. Commun. 107, 1504–1507 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Garber E.A., Hollocher T.C.:15N tracer studies on the role of NO in denitrification.J. Biol. Chem. 256, 5459–5465 (1981).

    PubMed  CAS  Google Scholar 

  • Garcia-Horsman J.A., Berry E., Shapleigh J.P., Alben J.O., Gennis R.B.: A novel cytochrome-c oxidase fromRhodobacter sphœroides that lacks CuA.Biochemistry 33, 3113–3119 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Girsch P., de Vries S.: Purification and initial kinetic and spectroscopic characterisation of NO reductase fromParacoccus denitrificans.Biochim. Biophys. Acta 1318, 202–216 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Goretski J., Hollocher T.C.: The kinetic and isotopic competence of nitric oxide as an intermediate in denitrificationJ. Biol. Chem. 265, 889–895 (1990).

    PubMed  CAS  Google Scholar 

  • Goretski J., Hollocher T.C.: Trapping of nitric oxide produced during denitrification by extracellular hemoglobin.J. Biol. Chem. 263, 2316–2323 (1988).

    PubMed  CAS  Google Scholar 

  • Grant M.A., Hochstein L.I.: A dissimilatory nitrite reductase inParacoccus halodenitrificans.Arch. Microbiol. 137, 79–84 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Gray K.A., Grooms M., Myllykallio H., Moomaw C., Slaughter C., Daldal F.:Rhodobacter capsulatus contains a novelcb-type cytochrome-c oxidase without a CuA center.Biochemistry 33, 3120–3127 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Heiss B., Frunzke K., Zumft W.G.: Formation of the N−N bond from nitric oxide by a membrane-bound cytochromebc complex of nitrate-respiring (denitrifying)Pseudomonas stutzeri.J. Bacteriol. 171, 3288–3297 (1989).

    PubMed  CAS  Google Scholar 

  • Hendriks J., Warne A., Gohlke U, Haltia T, Ludovici C, Lubben M, Saraste M.: The active site of the bacterial nitric oxide reductase is a dinuclear iron center.Biochemistry 37, 13102–13109 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Jones A.M., Hollocher T.C.: Nitric oxide reductase ofAchromobacter cycloclastes.Biochim. Biophys. Acta 1144, 359–366 (1993).

    Article  CAS  Google Scholar 

  • Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., Tabata S.: Sequence analysis of the genome of the unicellular cyanobacteriumSynechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions.DNA Res. 3, 109–136 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Kasting F.J.: Bolide impacts and the oxidation state of carbon in the earth's early atmosphere.Origins Life Evol. Biosphere 20, 199–231 (1990).

    Article  CAS  Google Scholar 

  • Kastrau D.H., Heiss B., Kroneck P.M., Zumft W.G.: Nitric oxide reductase fromPseudomonas stutzeri, a novel cytochromebc complex. Phospholipid requirement, electron paramagnetic resonance and redox properties.Eur. J. Biochem. 222, 293–303 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Koschorreck M., Moore E., Conrad R.: Oxidation of nitric oxide by a new heterotrophicPseudomonas sp.Arch. Microbiol. 166, 23–31 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Koutný M., Kučera I., Tesařík R., Turánek J., van Spanning R.J.: Pseudoazurin mediates periplasmic electron flow in a mutant strain ofParacoccus denitrificans lacking cytochromec 550.FEBS Lett. 448, 157–159 (1999).

    Article  PubMed  Google Scholar 

  • Koutný M., Kučera I.: Kinetic analysis of substrate inhibition in nitric oxide reductase ofParacoccus denitrificans.Biochem. Biophys. Res. Commun. 262, 562–564 (1999).

    Article  PubMed  Google Scholar 

  • Kučera I., Kozák L., Dadák V.: Aerobic dissimilatory reduction of nitrite by cells ofParacoccus denitrificans.Biochem. Biophys. Acta 894, 120–126 (1987).

    Article  Google Scholar 

  • Kučera I., Lampardova L., Dadák V.: Control of respiration rate in non-growing cells ofParacoccus denitrificans.Biochem. J. 246, 779–782 (1987).

    PubMed  Google Scholar 

  • Kučera I.: Oscillations of nitric oxide concentration in the perturbed denitrification pathway ofParacoccus denitrificans.Biochem. J. 286, 111–116 (1992).

    PubMed  Google Scholar 

  • LeGall J., Payne W.J., Morgan T.V., Der Vartanian D.V.: On the purification of nitrite reductase fromThiobacillus denitrificans and its reaction with nitrite under reducing conditions.Biochem. Biophys. Res. Commun. 87, 355–362 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Liu M.-Y., Liu M.-C., Payne W.J., LeGall J.: Properties and electron transfer specificity of copper proteins from the denitrifierAchromobacter cycloclastes.J. Bacteriol. 166, 604–608 (1986).

    PubMed  CAS  Google Scholar 

  • Miyata M.: Studies on denitrification. XIV. The electron donating system in the reduction of nitric oxide and nitrate.J. Biochem. (Tokyo) 70, 205–213 (1971).

    CAS  Google Scholar 

  • Moody A.J., Rich P.R.: The reaction of hydrogen peroxide with pulsed cytochromeb 0 fromEscherichia coli.Eur. J. Biochem. 226, 731–737 (1994).

    Article  PubMed  CAS  Google Scholar 

  • van der Oost J., de Boer A.P., de Gier J.W., Zumft W.G., Stouthamer A.H., van Spanning R.J.: The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase.FEMS Microbiol. Lett. 121, 1–9 (1994).

    Article  PubMed  Google Scholar 

  • Packer L.:Nitric Oxide. B. Physiological and Pathological processes. Meth. Enzymol. 269 (1996).

  • Sakural N., Sakurai T.: Isolation and characterization of nitric oxide reductase fromParacoccus halodenitrificans.Biochemistry 36, 13809–13815 (1997).

    Article  Google Scholar 

  • Sakurai T., Sakurai N., Matsumoto H., Hirota S., Yamauchi O.: Roles of four iron centers inParacoccus halodenitrificans nitric-oxide reductase.Biochem. Biophys. Res. Commun. 251, 248–251 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Saraste M., Castresana J.: Cytochrome oxidase evolved by tinkering with denitrification enzymes.FEBS Lett. 341, 1–4 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Shapleigh J.P., Payne W.J.: Nitric oxide-dependent proton translocation in various denitrifiers.J. Bacteriol. 163, 837–840 (1985).

    PubMed  CAS  Google Scholar 

  • Sigler K., Chaloupka J., Brozmanová J., Stadler N., Höfer M.: Oxidative stress in microorganisms. I. Microbialvs. higher cells—damage and defenses in relation to cell aging and death.Folia Microbiol. 44, 587–624 (1999).

    Article  CAS  Google Scholar 

  • van Spanning R.J., de Boer A.P., Reijnders W.N., Westerhoff H.V., Stouthamer A.H., van der Oost J.: FnrP and NNR ofParacoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation.Mol. Microbiol. 23, 893–907 (1997).

    Article  PubMed  Google Scholar 

  • van Spanning R.J., Houben E., Reijnders W.N., Spiro S., Westerhoff H.V., Saunders N.: Nitric oxide is a signal for NNR-mediated transcription activation inParacoccus denitrificans.J. Bacteriol. 181, 4129–4132 (1999).

    PubMed  Google Scholar 

  • St. John R.T., Hollocher T.C.: Nitrogen-15 tracer studies on the pathway of denitrification inPseudomonas aeruginosa.J. Biol. Chem. 252, 212–218 (1977).

    PubMed  CAS  Google Scholar 

  • Subczynski W.K., Lomnicka M., Hyde, J.S.: Permeability of nitric oxide through lipid bilayer membranes.Free Radic. Res. 24, 343–349 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Wink D.A., Kasprazak K.S., Maragos C.M., Elespuru R.K., Misra M., Dunams T.M., Cebula T.A., Koch W.H., Andrews A.W., Allen J.S.: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors.Science 254, 1001–1003 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Zafiriou O.C., Hanley Q.S., Snyder G.: Nitric oxide and nitrous oxide production and cycling during dissimilatory nitrite reduction byPseudomonas perfectomarina.J. Biol. Chem. 264, 5694–5699 (1989).

    PubMed  CAS  Google Scholar 

  • Zumft W.G., Braun C., Cuypers H.: Nitric oxide reductase fromPseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochromebc complex.Eur. J. Biochem. 219, 481–90 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Zumft W.G., Dohler K., Körner H., Lochelt S., Viebrock A., Frunzke K.: Defects in cytochromecd 1-dependent nitrite respiration of transposonTn5-induced mutants fromPseudomonas stutzeri.Arch. Microbiol. 149, 492–498 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Zumft W.G., Körner H.: Enzyme diversity and mosaic gene organization in denitrification.Antonie Van Leeuwenhoek 71, 43–58 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Zumft W.G.: Cell biology and molecular basis of denitrification.Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Koutný.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutný, M. From no-confidence to nitric oxide acknowledgement: A story of bacterial nitric-oxide reductase. Folia Microbiol 45, 197–203 (2000). https://doi.org/10.1007/BF02908943

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908943

Keywords

Navigation