Skip to main content
Log in

Bacterial nitric oxide reductase: a mechanism revisited by an ONIOM (DFT:MM) study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Bacterial nitric oxide reductase (cNOR) is an important binuclear iron enzyme responsible for the reduction of nitric oxide to nitrous oxide in the catalytic cycle of bacterial respiration. The reaction mechanism of cNOR as well as the key reactive intermediates of the reaction are still under debate. Here, we report a computational study based on ONIOM (DFT:MM) calculations aimed at investigating the reaction mechanism of cNOR. The results suggest that the reaction proceeds via the mono-nitrosyl mechanism which starts off by the binding of an NO molecule to the heme b3 center, N-N hyponitrite bond formation as a result of the reaction with a second NO molecule was found to proceed with an exothermic energy barrier to yield a hyponitrite adduct forming an open (incomplete) ring conformation with the non-heme FeB center (O-N-N-O-FeB). N-O bond cleavage to yield N2O was shown to be the rate-limiting step with an activation barrier of 22.6 kcal mol-1. The dinitrosyl (trans) mechanism, previously proposed by several studies, was also examined and found unfavorable due to high activation barriers of the resulting intermediates.

Bacterial nitric oxide reductaseᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wasser IM, de Vries S, Meönne-Loccoz P, Schröder I, Karlin KD (2002) Chem Rev 102:1201

    Article  CAS  Google Scholar 

  2. Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fuku-mori Y, Murata T, Iwata S, Shiro Y (2010) Science 330:1666

    Article  CAS  Google Scholar 

  3. Moenne-Loccoz P, de Vries S (1998) J Am Chem Soc 120:5147

    Article  Google Scholar 

  4. Girsch P, de Vries S (1997) Biochim Biophys Acta 1318:202

    Article  CAS  Google Scholar 

  5. Kumita H, Matsuura K, Hino T, Takahashi S, Hori H, Fukumori Y, Morishima I, Shiro Y (2004) J Biol Chem 279:55247

    Article  CAS  Google Scholar 

  6. Ye RW, Averill BA, Tiedje JM (1994) Appl Environ Microbiol 60:1053

    CAS  Google Scholar 

  7. Butler CS, Seward HE, Greenwood C, Thomson AJ (1997) Biochemistry 36:16259

    Article  CAS  Google Scholar 

  8. Moënne-Loccoz P (2007) Nat Prod Rep 24:610

    Article  Google Scholar 

  9. Collman JP, Dey A, Yang Y, Decréau RA, Ohta T, Solomon EI (2008) J Am Chem Soc 130:16498

    Article  CAS  Google Scholar 

  10. Yeung N, Lin YW, Gao YG, Zhao X, Russell BS, Lei L, Miner KD, Robinson H, Lu Y (2009) Nature 462:1079

    Article  CAS  Google Scholar 

  11. Blomberg LM, Blomberg MR, Siegbahn PE (2006) Biochim Biophys Acta 1757:240

    Article  CAS  Google Scholar 

  12. Blomberg MRA, Siegbahn PEM (2012) Biochemistry 51:5173

    Article  CAS  Google Scholar 

  13. Shoji M, Hanaoka K, Kondo D, Sato A, Umeda H, Kamiya K, Shiraishi K (2014) Mol Phys 112:393

    Article  CAS  Google Scholar 

  14. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun 91:43

    Article  CAS  Google Scholar 

  15. Lindahl E, Hess B, van der Spoel D (2001) Gromacs 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306

    CAS  Google Scholar 

  16. Rostkowski M, Olsson MHM, Søndergaard CR, Jensen JH (2011) BMC Struct Biol 11:6

    Article  CAS  Google Scholar 

  17. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  19. Tao P, Schlegel HB (2010) A toolkit to assist ONIOM calculations. J Comput Chem 31:2363

    CAS  Google Scholar 

  20. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  21. Cramer CJ, Gour JR, Kinal A, Wtoch M, Piecuch P, Shahi ARM, Gagliardi L (2008) J Phys Chem A 112:3754–3767

    Article  CAS  Google Scholar 

  22. Zheng J, Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:569–582

    Article  CAS  Google Scholar 

  23. Torker S, Merki D, Chen P (2008) J Am Chem Soc 130:4808–4814

    Article  CAS  Google Scholar 

  24. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  25. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  26. Korth M, Grimme S (2009) J Chem Theory Comput 5:993–1003

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:324–333

    Article  CAS  Google Scholar 

  28. Attia AA, Lupan A, Silaghi-Dumitrescu R (2013) RSC Adv 3:26194

    Article  CAS  Google Scholar 

  29. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866

    Article  CAS  Google Scholar 

  30. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669

    Article  CAS  Google Scholar 

  31. Blomberg LM, Blomberg MRA, Siegbahn PEM (2004) J Biol Inorg Chem 9:923–935

    Article  CAS  Google Scholar 

  32. Blomberg LM, Blomberg MRA, Siegbahn PEM, van der Donk WA, Tsai A-L (2003) J Phys Chem B 107:3297–3308

    Article  CAS  Google Scholar 

  33. Pettersen EG, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the Romanian Ministry of Education and Research (Grant PN-II-ID-PCE-2012-4-0488) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Silaghi-Dumitrescu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, A.A.A., Silaghi-Dumitrescu, R. Bacterial nitric oxide reductase: a mechanism revisited by an ONIOM (DFT:MM) study. J Mol Model 21, 130 (2015). https://doi.org/10.1007/s00894-015-2679-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2679-0

Keywords

Navigation