Skip to main content
Log in

Oxidative stress in microorganisms—I

Microbialvs. higher cells—Damage and defenses in relation to cell aging and death

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Oxidative stress in microbial cells shares many similarities with other cell types but it has its specific features which may differe in prokaryotic and eukaryotic cells. We survey here the properties and actions of primary sources of oxidative stress, the role of transition metals in oxidative stress and cell protective machinery of microbial cells, and compare them with analogous features of other cell types. Other features to be compared are the action of reactive oxygen species (ROS) on cell constituents, secondary lipid-or protein-based radicals and other stress products. Repair of oxidative injury by microorganisms and proteolytic removal of irreparable cell constituents are briefly described. Oxidative damage of aerobically growing microbial cells by endogenously formed ROS mostly does not induce changes similar to the aging of multiplying mammalian cells. Rapid growth of bacteria and yeast prevents accumulation of impaired macromolecules which are repaired, diluted or eliminated. During growth some simple fungi, such as yeast orPodospora spp., exhibit aging whose primary cause seems to be fragmentation of the nucleolus or impairment of mitochondrial DNA integrity. Yeast cell aging seems to be accelerated by endogenous oxidative stress. Unlike most growing microbial cells, stationaryphase cells gradually lose their viability because of a continuous oxidative stress, in spite of an increased synthesis of antioxidant enzymes. Unlike in most microorganisms, in plant and animal cells a severe oxidative stress induces a specific programmed death pathway-apoptosis. The scant data on the microbial death mechanisms induced by oxidative stress indicate that in bacteria cell death can result from activation of autolytic enzymes (similarly to the programmed mother-cell death at the end of bacillar sporulation). Yeast and other simple eukaryotes contain components of a proapoptotic pathway which are silent under normal conditions but can be activated by oxidative stress or by manifestation of mammalian death genes, such asbak orbax. Other aspects, such as regulation of oxidative-stress response, role of defense enzymes and their control, acquisition of stress tolerance, stress signaling and its role in stress response, as well as cross-talk between different stress factors, will be the subject of a subsequent review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M.W.W.: The biochemical diversity of life near and above 100°C in marine environments.J. Appl. Microbiol.85, 108S-117S (1999).

    Google Scholar 

  • Adjimani J.P., Owusu E.: Nonenzymatic NADH/FMN-dependent reduction of ferric siderophores.J. Inorg. Biochem.66, 247–252 (1997).

    Article  CAS  Google Scholar 

  • Ahmad S.I., Kirk S.H., Eisenstark A.: Thymine metabolism and thymineless death in prokaryotes and eukaryotes.Ann. Rev. Microbiol.52, 591–625 (1998).

    Article  CAS  Google Scholar 

  • Aizenman E., Engelberg-Kulka H., Glaser G.: AnEscherichia coli chromosomal addiction molecule regulated by 3',5'-bispyrophosphate: a model for programmed bacterial cell death.Proc. Nat. Acad. Sci. USA93, 6059–6063 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Akaike T., Suga M., Maeda H.: Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO.Proc. Soc. Exp. Biol. Med.217, 64–73 (1998).

    PubMed  CAS  Google Scholar 

  • Albrecht-Gary A.-M., Crumbliss A.L.: Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release, pp. 240–323 inMetal Ions in Biological Systems (A. Sigel, H. Sigel, Eds.). Marcel Dekker, New York-Basel-Hong Kong 1998.

    Google Scholar 

  • Allen R.T., Cluck M.W., Agrawal D.K.: Mechanisms controlling cellular suicide, role of bcl-2 and caspases.Cell Mol. Life Sci.54, 427–445 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Altuvia S., Almirón M., Huisman G., Kolter R., Storz G.: Thedps promoter is activated by OxyR during growth and by IHF and σS in stationary phase.Mol. Microbiol.13, 265–272 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Ameisen J.C.: The origin of programmed cell death.Science272, 1278–1279 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Ames B.N., Shigenaga M.K., Hagen T.M.: Oxidants, antioxidants and degenerative disease of aging.Proc. Nat. Acad. Sci. USA90, 7915–7922 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Ames B.M., Shigenaga M.K.: Oxidants are the major contributor to aging.Ann. New York Acad. Sci.663, 85–96 (1992).

    Article  CAS  Google Scholar 

  • Armstrong D.,Free Radical and Antioxidant Protocols/Methods. Mol. Biol. 108 (D. Armstrong, Ed.), Humana Press, Totowa (NJ) 1998.

    Google Scholar 

  • Ashrafi K., Sinclair D., Gordon J.I., Guarente L.: Pasage through stationary phase advances replicative aging inSaccharomyces cerevisiae.Proc. Nat. Acad. Sci. USA96, 9100–9105 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Askwith C., Kaplan J.: Iron and copper transport in yeast and its relevance to human disease.Trends Biochem. Sci.23, 135–138 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Aslund F., Beckwith J.: The thioredoxin superfamily: redundancy, specificity, and gray-area genomics.J. Bacteriol.181, 1375–1379 (1999).

    PubMed  CAS  Google Scholar 

  • Assmann S., Sigler K., Höfer M.: Cd2+-induced damage to yeast plasma membrane and its alleviation by Zn2+: studies onSchizosaccharomyces pombe cells and reconstituted plasma membrane vesiclesArch. Microbiol.165, 279–284 (1996).

    Article  CAS  Google Scholar 

  • Ashoh S., Nishimaki K., Nanbu-Wakao R., Ohta S.: A trace amount of the human pro-apoptotic factor Bax induces bacterial death accompanied by damage of DNA.J. Biol. Chem.273, 11384–11391 (1998).

    Article  Google Scholar 

  • Augeri L., Lee Y.M., Barton A.B., Doetsch P.W.: Purification, characterization, gene cloning, and expression ofSaccharomyces cerevisiae redoxyendonuclease, a homolog ofEscherichia coli endonuclease III.Biochemistry36, 721–729 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Bagg A., Neilands J.B.: Ferric uptake regulation protein acts as a repressor employing iron(II) as a cofactor to bind the operator of an iron transport operon inEscherichia coli.Biochemistry26, 5471–5477 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Bailey S.M., Fauconnet A.-L., Reinke L.A.: Comparison of salicylate andd-phenylalanine for detection of hydroxyl radicals in chemical and biological reactions.Redox Report3, 17–22 (1997).

    CAS  Google Scholar 

  • Barker M.G., Brimage L.J.E., Smart K.A.: Effect of Cu,Zn superoxide dismutase mutation on replicative senescence inSaccharomyces cerevisiae.FEMS Microbiol. Lett.177, 199–204 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Barr D.P., Gunther M.R., Deterling L.J., Tomer K.B., Mason R.P.: ESR spin trapping of a protein-derived tyrosyl radical from the reaction of cytochromec with hydrogen peroxide.J. Biol. Chem.271, 15498–15503 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Basu A.K., Loechler E.L., Leadon L.A., Essigman J.M.: Genetic effects of thymine glycols: site specific mutagenesis and molecular modeling studies.Proc. Nat. Acad. Sci. USA86, 7677–7681 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Beall B., Sanden G.N.: ABordetella pertussis fepA homologue required for utilization of exogenous ferric enterobactin.Microbiology (UK)141, 3193–3205 (1995).

    CAS  Google Scholar 

  • Becker-Hapak M., Eisenstark A.: Role ofrpoS in the regulation of glutathione oxidoreductase (gor) inEscherichia coli.FEMS Microbiol. Lett.134, 39–44 (1995).

    PubMed  CAS  Google Scholar 

  • Beckman K.B., Ames B.N.: The free radical theory of aging matures.Physiol. Rev.78, 547–581 (1998).

    PubMed  CAS  Google Scholar 

  • Belazzi T., Wagner A., Wieser R., Schanz M., Adam G., Hartig A., Ruis H.: Negative regulation of transcription of theS. cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element.EMBO J.10, 585–592 (1991).

    PubMed  CAS  Google Scholar 

  • Benzie I.F.F., Strain J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay.Anal. Biochem.239, 70–76 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Biswas G.B., Anderson J.E., Sparling P.F.: Cloning and functional characterization ofNeisseria gonorrhoeae tonB, exbB andsxbD genes.Mol. Microbiol.24, 169–179 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Billard P., Dumond H., Bolotin-Fukuhara M.: Characterisation of an AP-1-like transcription factor that mediates an oxidative stress response inKluyveromyces lactis.Mol. Gen. Genet.257, 62–70 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Bleau G., Giasson C., Brunette I.: Measurement of hydrogen peroxide in biological samples containing high levels of ascorbic acid.Anal. Biochem.263, 13–17 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield S.F., Arthur M.: Interactions ofBacillus subtilis spores with sodium hypochlorite, sodium dichloroisocyanurate and chloramine.J. Appl. Bacteriol.72, 166–172 (1992).

    PubMed  CAS  Google Scholar 

  • Boiteux S.: Properties and biological functions of the Nth and Fpg proteins ofEscherichia coli: Two DNA glycosylases that repair oxidative damage in DNA.Photochem. Photobiol.B19, 87–96 (1993).

    Article  CAS  Google Scholar 

  • Brennan R.J., Schiestl R.H.: Cadmium is an inducer of oxidative stress in yeast.Mutat. Res.356, 171–178 (1996).

    PubMed  Google Scholar 

  • Brennan R.J., Schiestl R.H.: Amline and its metabolites generate free radicals in yeast.Mutagenesis12, 215–220 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Breeuwer P., Drocourt J.-L., Rombouts F.M., Abee T.: Energy-dependent, carrier-mediated extrusion of carboxyfluorescein fromS. cerevisiae allows rapid assessment of cell viability by flow cytometry.Appl. Environ. Microbiol.60, 1467–1472 (1994).

    PubMed  CAS  Google Scholar 

  • Breeuwer P., Drocourt J.-L., Bunschoten N., Zwietwring M.H., Rombouts F.M., Abee T.: Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases inS. cerevisiae, which result in accumulation of fluorescent product.Appl. Environ. Microbiol.61, 1614–1619 (1995).

    PubMed  CAS  Google Scholar 

  • Brickman T.J., Armstrong S.K.: Purification, spectroscopic analysis and biological activity of the macrocyclic dihydroxamate siderophore alcaligin produced byBordetella bronchiseptica.Biometals9, 191–203 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Cai J., Jones D.P.: Superoxide in apoptosis. Mitochondrial generation triggered by cytochromec loss.J. Biol. Chem.273, 11401–11404 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Campisi J.: Replicative senescence: an old live's tale?.Cell84, 497–500 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Candeias L.P., Patel K.B., Stratford M.R.L., Wardman P.: Free hydroxyl radicals are formed on reaction between the neutrophilderived species superoxide anion and hypochlorous acid.FEBS Lett.333, 151–153 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Candeias L.P., Stratford M.R.L., Wardman P.: Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(II) complex.Free Radicals Res.20, 241–249 (1994).

    CAS  Google Scholar 

  • Cannac-Caffrey V., Hudry-Clergeon G., Petillot Y., Gagnon J., Zaccai G., Franzetti B.: The protein sequence of an archeal catalase-peroxidase.Biochimie80, 1003–1011 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Castignetti D.: Probing ofPseudomonas aeruginosa, P. aureofaciens, Burkholderia (Pseudomonas) cepacia, P. fluorescens, andP. putida with the ferripyochelin receptor A gene and the synthesis of pyochelin inP. aureofaciens, P. fluorescens andP. putida.Curr. Microbiol.34, 250–257 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Catalano C.E., Choe Y.S., Ortiz de Montellano P.R.: Reaction of the protein radical in peroxide-treated myoglobin.J. Biol. Chem.264, 10534–10541 (1989).

    PubMed  CAS  Google Scholar 

  • Chaloupka J., Vinter V.: Programmed cell death in bacteria.Folia Microbiol.41, 451–464 (1996).

    Article  CAS  Google Scholar 

  • Chen C.-J., Sparling P.F., Lewis L.A., Dyer D.W., Elkins C.E.: Identification and purification of a hemoglobin-binding outer membrane proteins fromNeisseria gonorrhoeae.Infect. Immun.64, 5008–5014 (1996).

    PubMed  CAS  Google Scholar 

  • Chopra A.K., Strandová M., Chaloupka J.: Turnover of abnormal proteins inBacillus megaterium andSaccharomyces cerevisiae: differences betweenin vivo andin vitro degradation.Arch. Microbiol.145, 97–103 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Christensen B.E., Myhr M., Smidsrød O.: The degradation of xanthan by hydrogen peroxide in the presence of ferrous ions. Comparison to acid hydrolysis.Carbohydr. Res.280, 85–99 (1996).

    Article  PubMed  CAS  Google Scholar 

  • CohenG.: The Fenton reaction, pp. 55–64 inCRC Handbook for Oxygen Radical Research (R.A. Greenwald, Ed.). CRC Press, Boca Raton 1985.

    Google Scholar 

  • Colepicolo P., Camarero V.C.P.C., Nicolas M.T., Bassot J.-M., Karnovsky M.L., Hastings J.W.: A sensitive and specific assay for superoxide anion released by neutrophils or macrophages based on bioluminescence of polynoidin.Anal. Biochem.184, 369–374 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Cortez N., Carillo N., Pasternak C., Balzer A., Klug G.: Molecular cloning and expression analysis ofRhodobacter capsulatus sodB gene, encoding an iron superoxide dismutase.J. Bacteriol.180, 5413–5420 (1998).

    PubMed  CAS  Google Scholar 

  • Coulanges V., Andre P., Vidon D.J.-M.: Effect on siderophores, catecholamines, and catechol compounds onListeria spp. Growth in iron-complexed medium.Biochem. Biophys. Res. Commun.167, 126–130 (1998).

    Google Scholar 

  • Craig E.A., Weissman J.S., Horwich A.L.: Heat shock proteins and molecular chaperones mediators of protein conformation and turnover in the cell.Cell78, 365–372 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Cummings D.J.: Mitochondrial DNA inPodospora anserina. A molecular approach to cellular senescence.Monograph. Dev. Biol.17, 254–266 (1984).

    CAS  Google Scholar 

  • Cunningham R.C.: DNA glycosylases.Mutat. Res.383, 189–196 (1997).

    PubMed  CAS  Google Scholar 

  • DalleDonne I., Milzani A., Colombo R.: H2O2-treated actin: assembly and polymer interactions with cross-linking proteins.Biophys. J.69, 2710–2719 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Dang J., Holub E.: La dolce vita: a molecular feast in plant-pathogen interactions.Cell91, 17–24 (1997).

    Article  Google Scholar 

  • Daniel C., Haentjens S., Bissinger M.C., Courcol R.J.: Characterization of theAcinetobacter baumanii Fur regulator: cloning and sequencing of thefur homolog gene.FEMS Microbiol. Lett.170, 199–209 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Davies K.J.A.: Intracellular proteolytic systems may function as secondary antioxidant defenses: an hypothesis.Free Radicals Biol. Med.2, 155–173 (1986).

    Article  CAS  Google Scholar 

  • Davies K.J.A.: Protein damage and degradation by oxygen radicals. I. General aspects.J. Biol. Chem.262, 9895–9901 (1987).

    PubMed  CAS  Google Scholar 

  • Davies K.J.A., Lin S.W.: Degradation of oxidatively denatured proteins inEscherichia coli.Free Radicals Biol. Med.5, 215–223 (1988a).

    Article  CAS  Google Scholar 

  • Davies K.J.A., Lin S.W.: Oxidatively denatured proteins are degraded by an TP-independent proteolytic pathway inEscherichia coli.Free Radicals Biol. Med.5, 225–236 (1988b).

    Article  CAS  Google Scholar 

  • Davies M.J., Dean R.T.:Radical-mediated Protein Oxidation. From Chemistry to Medicine Oxford University Press. Oxford-New York-Tokyo 1997.

    Google Scholar 

  • Dean R.T., Fu S., Stocker R., Davies M.J.: Biochemistry and pathology of radical-mediated protein oxidation.Biochem. J.324, 1–18 (1997).

    PubMed  CAS  Google Scholar 

  • Decamp O., Rajendran N., Nakano H., Nair G.B.: Estimation of the viability ofVibrio cholerae O139 by assessing cell membrane integrity.Microbios92, 83–89 (1997).

    PubMed  CAS  Google Scholar 

  • Demple B.: Adaptive responses to genotoxic damage: bacterial strategies to prevent mutation and cell death.Bioassays6, 154–160 (1986).

    Google Scholar 

  • Demple B., Harrison L.: Repair of oxidative damage to DNA: enzymology and biology.Ann. Rev. Biochem.63, 915–948 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Deretic V., Philipp W., Dhandayuthapani S., Mudd M.H., Curcic R., Garbe T., Heym B., Viat E., Cole S.T.:Mycobacterium tuberculosis is a natural mutant with an inactive oxidative-stress regulatory gene: implication for sensitivity to isoniazide.Mol. Microbiol.17, 889–900 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J.C.: Ascorbic acid oxidation by hydrogen peroxide.Anal. Biochem.255, 1–7 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Dickson R.C.: Sphingolipid functions inSaccharomyces cerevisiae: comparison to mammals.Ann. Rev. Biochem.67, 27–48 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Di Mascio P., Bechara E.J.H., Medeiros M.H.G., Briviba K., Sies H.: Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide.FEBS Lett.355, 287–289 (1994).

    Article  PubMed  Google Scholar 

  • Diomina G.R., Pleshakova O.V., Sibeldina L.A., Kharatian E.F., Shchipanova I.N., Ostrovsky D.N.: Stability of a recently discovered product of oxidative stress in bacterial cells.Biochemistry (Moscow)60, 481–486 (1995).

    Google Scholar 

  • Dix D., Bridgham J., Broderius M., Eide D.: Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron.J. Biol. Chem.272, 11770–11777 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu M.: Oxidative damage to DNA in mammalian chromatin.Mutat. Res.275, 331–342 (1992).

    PubMed  CAS  Google Scholar 

  • Donnini D., Zambito A.M., Perrella G., Ambesi-Impiombato F.S., Curcio F.: Glucose may induce cell death through a free radical-mediated mechanism.Biochem. Biophys. Res. Commun.219, 412–417 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Doyle R.J., Chaloupka J., Vinter V.: Turnover of cell wall in microorganisms.Microbiol. Rev.52, 554–567 (1988).

    PubMed  CAS  Google Scholar 

  • Dowds B.C.A., Murphy P., Mc Conell D.J., Devine K.M.: Relationship among oxidative stress, growth cycle and sporulation inBacillus subtilis.J. Bacteriol.169, 5771–5775 (1987).

    PubMed  CAS  Google Scholar 

  • Dreher D., Junod A.F.: Role of oxygen free radicals in cancer development.Eur. J. Cancer32A, 30–38 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Dukan S., Dadon S., Smulski D.R., Belkin S.: Hypochlorous acid activates the heat shock and sox RS systems ofEscherichia coli.Appl. Environ. Microbiol.62, 4003–4008 (1996).

    PubMed  CAS  Google Scholar 

  • Dunning J.C., Ma Y., Marquis R.E.: Anaerobic killing of oral streptococci by reduced, transition metal cations.Appl. Environ. Microbiol.64, 27–33 (1998).

    PubMed  CAS  Google Scholar 

  • Edeas M.A., Emerit I., Kalfoun Y., Lazizi Y., Cernjavski L., Levy A., Lindenbaum A.: Clastogenic factors in plasma of HIV-infected patients activate HIV-I replicationin vitro: inhibition by superoxide dismutase.Free Radicals Biol. Med.23, 571–578 (1997).

    Article  CAS  Google Scholar 

  • Eide D.J.: The molecular biology of metal ion transport inS. cerevisiae.Ann. Rev. Nutr.18, 441–469 (1998).

    Article  CAS  Google Scholar 

  • Eide L., Bjoras M., Pirovano M., Alseth I., Berdal K.G., Seeberg E.: Base excision of oxidative purine and pyrimidine DNA damage inSaccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonucleae III fromEscherichia coli.Proc. Nat. Acad. Sci. USA93, 10735–10740 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Eisenstark A., Miller K., Jones J. Levén S.:Escherichia coli genes involved in cell survival during dormancy: role of oxidative stress.Biochem. Biophys. Res. Commun.188, 1054–1059 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Eisenstark A., Yallaly P., Ivanova A., Miller C.: Genetic mechanisms involved in cellular recovery from oxidative stress.Arch. Insect. Biochem. Physiol.29, 159–173 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Ellis R.E., Yuan J., Horvitz H.R.: Mechanisms and function of cell death.Ann. Rev. Cell Biol.7, 663–698 (1991).

    PubMed  CAS  Google Scholar 

  • Enoch T., Norbury C.: Cellular responses to DNA damage: cell-cycle check points, apoptosis and the roles of p53 and ATM.Trends Biol. Sci.20, 426–430 (1995).

    Article  CAS  Google Scholar 

  • Epe B.: DNA damage profiles induced by oxidizing agents.Rev. Physiol. Biochem. Pharmacol.127, 223–249 (1995).

    Google Scholar 

  • Errington J.:Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis.Microbiol. Rev.57, 1–33 (1993).

    PubMed  CAS  Google Scholar 

  • Esterbauer H., Schaur R.J., Zollner H.: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.Free Radicals Biol. Med.10, 191–193 (1991).

    Article  Google Scholar 

  • Esterbauer H.: Cytotoxicity and genotoxicity of lipid oxidation products.Amer J. Clin. Nutr.57, 779S-786S (1993).

    PubMed  CAS  Google Scholar 

  • Esterbauer H.: Estimation of peroxidative damage. A critical review.Pathol. Biol.,44, 25–28 (1996).

    PubMed  CAS  Google Scholar 

  • Faragher R.G.A., Kipling D.: How might replicative senescence contribute to human ageing?Bioassays20, 985–991 (1998).

    Article  CAS  Google Scholar 

  • Farr S.B., Kogoma T.: Oxidative stress responses inEscherichia coli andSalmonella typhimurium.Microbiol. Rev.55, 561–585 (1991).

    PubMed  CAS  Google Scholar 

  • Feng J., Yamanaka K., Niki H., Ogura T., Hiraga S.: New killing system controlled by two genes located immediately upstream of themukB gene inEscherichia coli.Mol. Gen. Genet.243, 136–147 (1994).

    PubMed  CAS  Google Scholar 

  • Fenton W.A., Horwich A.L.: GroEL-mediated protein folding.Protein Sci.6, 743–760 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ferguson G.P., Booth I.R.: Importance of glutathione for growth and survival ofEscherichia coli cells: detoxication of methylglyoxal and maintenance of intracellular K+.J. Bacteriol.180, 4314–4318 (1998).

    PubMed  CAS  Google Scholar 

  • Flattery-O'Brien J.A., Daves I.W.: Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 inSaccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function.J. Biol. Chem.273, 8564–8571 (1998).

    Article  PubMed  Google Scholar 

  • Flattery-O'Brien J.A., Grant C.M., Dawes I.W.: Stationary phase regulation of theSaccharomyces cerevisiae SOD2 gene is dependent on additive effects of HAP2/3/4/5-and STRE-binding elements.Mol. Microbiol.23, 303–312 (1997).

    Article  PubMed  Google Scholar 

  • Fouz B., Biosca E.G., Amaro C.: High affinity iron uptake systems inVibrio damsela: role in the acquisition of iron from transferrin.J. Appl. Microbiol.82, 157–167 (1997).

    PubMed  CAS  Google Scholar 

  • Fréhel C., Ryter A.: Reversibilité de la sporulation chezB. subtilis.Ann. Inst. Pasteur117, 297–311 (1969).

    Google Scholar 

  • Frenkel K., Wei L.H., Wei H.C.: 7,12-Dimethylbenz[a]anthracene induces oxidative DNA modificationin vivo.Free Radicals Biol. Med.19, 373–380 (1995).

    Article  CAS  Google Scholar 

  • Frew J.E., Jones P., Scholes G.: Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solutions.Anal. Chim. Acta155, 139–150 (1983).

    Article  CAS  Google Scholar 

  • Friedberg E.C., Walker G.C., Siede W.:DNA Repair and Mutagenesis. AMS Press, Washington (DC) 1995.

    Google Scholar 

  • Fuentes A.M., Amabile-Cuevas C.F.: Antioxidant vitamins C and E affect the superoxide-mediated induction ofsoxRS regulon inEscherichia coli.Microbiology (UK)144, 1731–1736 (1998).

    CAS  Google Scholar 

  • Gabai V.L., Meriin A.B., Mosser D.D., Caron A.W., Rits S., Shifrin V.I., Sherman M.Y.: Hsp 70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance.J. Biol. Chem.272, 18033–18037 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gardner P., Fridovich I.: Superoxide sensitivity of theEscherichia coli 6-phosphogluconate dehydratase.J. Biol. Chem.266, 1478–1483 (1991).

    PubMed  CAS  Google Scholar 

  • Garner W.H., Garner M.H., Spector A.: H2O4-induced uncoupling of bovine lens Na+, K+-ATPase.Proc. Nat. Acad. Sci. USA80, 2044–2048 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Garner W.H., Garner M.H., Spector A.: Kinetic cooperativity change after H2O2 modification of (Na,K)-ATPase.J. Biol. Chem.259, 7712–7718 (1984).

    PubMed  CAS  Google Scholar 

  • Gebicky J.M.: Protein hydroperoxides as new reactive oxygen species.Redox Report3, 99–110 (1997).

    Google Scholar 

  • Gershman R., Gilbert D.L., Nye S.W., Dwyer P., Fenn W.O.: Oxygen poisoning and X-irradiation: a mechanism in common.Science119, 623–629 (1854).

    Article  Google Scholar 

  • Gille G., Sigler K.: Oxygen and the living cells.Folia Microbiol.40, 131–152 (1997).

    Article  Google Scholar 

  • Gille G., Sigler K., Höfer M.: Response of catalase activity and membrane fluidity of aerobically grownSchizosaccharomyces pombe andS. cerevisiae to aeration and the presence of substrates.J. Gen. Microbiol.139, 1627–1634 (1993).

    PubMed  CAS  Google Scholar 

  • Ginsburg I.: Could synergistic interactions among reactive oxygen species, proteinases, membrane-perforating enzymes, hydrolases, microbial hemolysins and cytokines be the main cause of tissue damage in infectious and inflammatory conditions?Med. Hypotheses51, 337–346 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Girard P.M., Boiteux S.: Repair of oxidized DNA bases in the yeastSaccharomyces cerevisiae.Biochimie79, 559–566 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gockeritz D., Friedrich F., Yahya M.: Spectrophotometric determination of hydrogen peroxide.Pharmacie50, 437–438 (1995).

    Google Scholar 

  • Goff S.A., Goldberg A.L.: Production of abnormal proteins inE. coli stimulates transcription oflon and other heat shock genes.Cell41, 587–595 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Goldberg A.L., St. John A.C.: Intracellular protein degradation in mammalian and bacterial cells. Part 2.Ann. Rev. Biochem.45, 747–803 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Gossard F., Verly W.G.: Properties of the main endonuclease specific for apurinic sites ofEscherichia coli. Mechanism of apurinic site excision from DNA.Eur. J. Biochem.82, 321–332 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Gossett J., Lee K., Cunningham R.P., Doetsch P.W.: Yeast redoxyendonuclease: a DBA repair enzyme similar toEscherichia coli endonuclease III.Biochemistry27, 2629–2634 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S., Wickner S., Maurizi M.R.: Protein quality control: triage by chaperones and proteases.Genes Develop.11, 815–823 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Grady J.K., Chasteen N.D., Harris D.C.: Radicals from “Good's” buffers.Anal. Biochem.173, 111–115 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Grant C.M., Dawes I.W.: Synthesis and role of glutathione in protection against oxidative stress in yeast.Redox Report2, 223–229 (1996).

    CAS  Google Scholar 

  • Green D., Kroemer G.: The central executioners of apoptosis: caspases or mitochondria?Trends Cell Biol.8, 267–271 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Greenberg J.T.: Programmed cell death: a way of life for plants.Proc. Nat. Acad. Sci. USA93, 12094–12097 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Greenwald R.A. (Ed.)CRC Handbook for Oxygen Radical Research. CRC Press, Boca Raton 1985.

    Google Scholar 

  • Greenwood N.N., Earnshaw A.:Chemistry of Elements, Vol. II, pp. 1121–1126. (in Czech) Informatorium, Prague 1993.

    Google Scholar 

  • Grollman A.P., Moriya M.: Mutagenesis by 8-oxoguanine: an enemy within.Trends Genet.9, 246–249 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Grune T., Reinheckel T., Joshi M., Davies K.J.A.: Proteolysis in cultured epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome.J. Biol. Chem.270, 2344–3451 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Grune T., Reinheckel T., Davies K.J.A.: Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome.J. Biol. Chem.271, 15504–15509 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Grune T., Reinheckel T., Davies K.J.A.: Degradation of oxidized proteins in mammalian cells.FASEB J.11, 526–534 (1997).

    PubMed  CAS  Google Scholar 

  • Gutteridge J.M.: Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate.Biochem. J.224, 761–767 (1984).

    PubMed  CAS  Google Scholar 

  • Gutteridge J.M.C., Quinlan G.J., Kovacic P.: Commentary: phagomimetic action of antimicrobial agents.Free Radicals Res.28, 1–14 (1998).

    CAS  Google Scholar 

  • Haberland A., Damerau W., Stösser R., Schimke I., Baumann G.: Fe2+/vitamin C—an appropriatein vitro model system to initiate lipid peroxidation.J. Inorg. Biochem.61, 43–53 (1996).

    Article  CAS  Google Scholar 

  • Hahn K.B., Lee K.J., Kim J.H., Cho S.W., Chung M.H.:Helicobacter pylori infection, oxidative DNA damage, gastric carcinogenesis, and reversibility by rebamipide.Digest Dis. Sci.43, S72-S77 (1998).

    Article  Google Scholar 

  • Halliwell B., Gutteridge J.M.C.: Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts.FEBS Lett.128, 347–352 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B., Gutteridge J.M.C.: Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts.Arch. Biochem. Biophys.246, 501–514 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B., Gutteridge J.M.C.:Free Radicals in Biology and Medicine, 2nd ed. Clarendon Press, Oxford 1989.

    Google Scholar 

  • Halliwell B., Gutteridge J.M.C.: The definition and measurements of antioxidants in biological systems.Free Radicals Biol. Med.18, 125–126 (1995).

    Article  CAS  Google Scholar 

  • Hanlon M.C., Seybert D.W.: The pH dependence of lipid peroxidation using water-soluble azo initiators.Free Radicals Biol. Med.23, 712–719 (1997).

    Article  CAS  Google Scholar 

  • Hansberg W., de Groot H., Sies H.: Reactive oxygen species associated with cell differentiation inNeurospora crassa.Free Radicals Biol. Med.14, 287–293 (1993).

    Article  CAS  Google Scholar 

  • Harman D.: Aging: a theory based onfree radical and radiation biology.J. Gerontol.,11, 298–300 (1956).

    PubMed  CAS  Google Scholar 

  • Harms C., Meyer M.A., Andreesen J.R.: Fast purification of thioredoxin reductase and of thioredoxin with an unusual redox-active centre from anaerobic amino-acid-utilizing bacteria.Microbiology (UK)144, 393–400 (1998).

    Google Scholar 

  • Hassett R.F., Romeo A.M., Kosman D.J.: Regulation of high affinity iron uptake in the yeastS. cerevisiae. Role of dioxygen and Fe(II).J. Biol. Chem.273, 7628–7636 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hayes C.S., Klades-Aguiar B., Casillas-Martinez L., Setlow P.:In vitro andin vivo oxidation of methionine residues in small, acid-soluble spore proteins ofBacillus species.J. Bacteriol.180, 2694–2700 (1998).

    PubMed  CAS  Google Scholar 

  • Hayflick L.: Cell biology of aging.Fed. Proc.38, 1847–1850 (1979).

    PubMed  CAS  Google Scholar 

  • Hengge-Aronis R.: Survival of hunger and stress: the role ofrpoS in early stationary phase gene regulation inE. coli.Cell72, 165–168 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Henle E.S., Linn S.: Formation, prevention and repair of DNA damage by iron/hydrogen peroxide.J. Biol. Chem.272, 19095–19098 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Herbert V.: Prooxidant effects of antioxidant vitamins.J. Nutr.126, 1197S-1200S (1996).

    PubMed  CAS  Google Scholar 

  • Hetts S.W.: To die or not to die. An overview, of apoptosis and its role in disease.J. Amer. Med. Assoc.279, 300–307 (1998).

    Article  CAS  Google Scholar 

  • Hidalgo E., Ding H., Demple B.: Redox signal transductionvia iron-sulfur clusters in the SoxR transcription activator.Trends Biochem. Sci.22, 207–210 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Higgins C.F.: ABC transporters: from microorganisms to man.Ann. Rev. Cell Biol.8, 67–113 (1992).

    PubMed  CAS  Google Scholar 

  • Hjerde T., Stokke B.T., Smidsrød O., Christensen B.E.: Free-radical degradation of triple-stranded scleroglucan by hydrogen peroxide and ferrous ions.Carbohydr. Polymers37, 41–48 (1998).

    Article  CAS  Google Scholar 

  • Hochman A.: Programmed cell death in prokaryotes.Crit. Rev. Microbiol.23, 207–214 (1997).

    PubMed  CAS  Google Scholar 

  • Hoehler D., Marquardt R.R., McIntosh A.R., Madhyastha S.: Free radical-mediated lipid peroxidation induced by T-2 toxin in yeast (Kluyveromyces marxianus).J. Nutr. Biochem.9, 370–379 (1998).

    Article  CAS  Google Scholar 

  • Holmgren A.: Thioredoxin and glutaredoxin.J. Biol. Chem.264, 13963–13969 (1989).

    PubMed  CAS  Google Scholar 

  • Howlett N.G., Avery S.V.: Induction of lipid peroxidation during heavy metal stress inS. cerevisiae and influence of plasma membrane fatty acid unsaturation.Appl. Environ. Microbiol.63, 2971–2976 (1997).

    PubMed  CAS  Google Scholar 

  • Imlay J.A., Linn S.: DNA damage and oxygen radical toxicity.Science240, 1302–1309 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Ink B., Zörnig M., Baum B., Hajibagheri N., James C., Chittenden T., Evan G.: Human Bak induces cell death inSchizosaccharomyces pombe with morphological changes similar to those with apoptosis in mammalian cells.Mol. Cell Biol.17, 2468–2474 (1997).

    PubMed  CAS  Google Scholar 

  • Irani K., Goldschmidt-Clermont P.J.: Ras, superoxide and signal transduction.Biochem. Pharmacol.55: 1339–1346 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S., Weiner L.: Cellular and molecular physiology ofEscherichia coli in the adaptation to aerobic environments.J. Biochem.120, 1055–1063 (1996).

    PubMed  CAS  Google Scholar 

  • Jäättelä M., Wissing O., Kokholm K., Kallunki T., Egeblad D.: Hsp 70 exerts its anti-apoptotic function downstream of caspase-3-like proteases.EMBO J.21, 6124–6134 (1998).

    Article  Google Scholar 

  • Jacobson M.D., Weil M., Raff M.C.: Programmed cell death in animal development.Cell88, 347–354 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Jakubowski W., Bartosz G.: Estimation of oxidative stress inSaccharomyces cerevisiae with fluorescent probes.Internat. J. Biochem. Cell Biol.29, 1297–1301 (1997).

    Article  CAS  Google Scholar 

  • Jakubowski W., Ertel D., Bilinski T., Kędziora J., Bartosz G.: Luminol luminescence induced by oxidants in antioxidant-deficient veastsS. cerevisiae.Biochem. Mol. Biol. Internat.45, 191–203 (1998).

    CAS  Google Scholar 

  • Jamieson D.J.:Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione.J. Bacteriol.174, 6678–6681 (1992).

    PubMed  CAS  Google Scholar 

  • Jamieson D.J.: The effect of oxidative stress onSaccharomyces cerevisiae.Redox Report1, 89–95 (1995).

    CAS  Google Scholar 

  • Janda S., Tauchová R.: Cyanide and antimycin A resistant respiration and uptake of 6-deoxy-d-glucose inRhodotorula glutinis.Cell. Mol. Biol.28, 547–553 (1982).

    PubMed  CAS  Google Scholar 

  • Janda S., Beneš L., Opekarová M., Šťastná J., Tauchová R.: Effect of hydrogen peroxide on the aerobic yeastRhodotorula glutinis.Microbios Lett.43, 37–42 (1990).

    CAS  Google Scholar 

  • Jazwinski S.M.: Replication control and cellular life span.Exp. Gerontol.24, 423–436 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski S.M.: Genes of youth: genetics of aging in baker's yeast.ASM News 172–178 (1993).

  • Jazwinski S.M.: Longevity, genes and aging.Science273, 54–59 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Jensen R.B., Gerdes K.: Programmed cell death in bacteria: protein plasmid stabilization systems.Mol. Microbiol.17, 205–210 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Jimenez Del Rio M., Velez Pardo C., Pinxteren J., De Potter W., Ebinger G., Vauquelin G.: Binding of serotonin and dopamine to “serotonin binding proteins” in bovine frontal cortex: evidence for iron-induced oxidative mechanisms.Eur. J. Pharmacol.15, 11–21 (1993).

    Google Scholar 

  • Johnson E.A., Levine R.L., Lin C.C.: Inactivation of glycerol dehydrogenase ofKlebsiella pneumoniae and the role of divalent cations.J. Bacteriol.164, 479–483 (1985).

    PubMed  CAS  Google Scholar 

  • Kaneko T., Tahara S., Matsuo M.: Non-linear accumulation of 8-hydroxy-2-deoxyguanosine, a marker of oxidized DNA damage, during aging.Mutat. Res.316, 277–285 (1996).

    PubMed  CAS  Google Scholar 

  • Karahalil B., Roldan-Arjona T., Dizdaroglu M.: Substrate specificity ofSchizosaccharomyces pombe Nth protein for products of oxidative DNA damage.Biochemistry37, 590–595 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Karam L.R., Bergtold D.S., Simic M.G.: Biomarkers of radical damagein vivo.Free Radicals Res. Commun.12–13, 11–16 (1991).

    Google Scholar 

  • Kaur T., Singh S., Dhawan V., Ganguly N.K.:Shigella dysenteriae type 1 toxin induced lipid peroxidation in enterocytes isolated from rabbit ileum.Mol. Cell. Biochem.178, 169–179 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki L., Wysong D., Diamond R., Aguire J.: Two divergent catalase genes are differentially regulated duringAspergillus nidulans development and oxidative stress.J. Bacteriol.179, 3284–3292 (1997).

    PubMed  CAS  Google Scholar 

  • Kell D.B., Kaprelyants A.S., Weichart D.H., Harwood C.R., Barer M.R.: Viability and activity of readily culturable bacteria: a review and discussion of the practical issues.Antonie van Leeuwenhoek73, 169–187 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kemper M.A., Doyle R.J.: Cell wall ofBacillus subtilis is protonated during growth, pp. 245–252 inBacteria Growth and Lysis (E.M. de Pedro, Ed.), Plenum Press, New York 1993.

    Google Scholar 

  • Kemper M.A., Urrutia M.M., Beveridge T.J., Koch A.L., Doyle R.J.: Proton motive force may regulate cell wall-associated enzymes ofBacillus subtilis.J. Bacteriol.175, 5690–5696 (1993).

    PubMed  CAS  Google Scholar 

  • Kennedy B.K., Austriaco N.R. Jr.,Zhang J., Guarente L.: Mutation in the silencing gene SIR4 can delay aging inS. cerevisiae.Cell80, 485–496 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Khan A.U., Kasha M.: Singlet molecular oxygen in the Haber-Weiss reaction.Proc. Nat. Acad. Sci. USA91, 12365–12367 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Khan A.U., Wilson T.: Reactive oxygen species as cellular messengers.Chem. Biol.2, 437–445 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kim I.S., Stiefel A., Plantör S., Angerer A., Braun V.: Transcription induction of the ferric citrate transport genesvia the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane.Mol. Microbiol.23, 333–344 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kirkland J.B.: Lipid peroxidation, protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: role of activation of poly(ADP-ribose) polymerase.Biochim. Biophys. Acta1092, 319–325 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff S.J., Waltersdorph A.M., Michel B.R., Rosen H.: Oxygen-based free radical generation by ferrous ions and desferrioxamine.J. Biol. Chem.264, 19765–19771 (1989).

    PubMed  CAS  Google Scholar 

  • Krems B., Charizanis C., Entian K-D.: The response regulator-like protein Pos9/Skn7 ofSaccharomyces cerevisiae is involved in oxidative stress resistance.Curr. Genet.29, 327–334 (1996).

    PubMed  CAS  Google Scholar 

  • Kretschmer S.: Reversion sporulierenderBacillus megaterium-Zellen zum Wachstum.Z. Allg. Mikrobiol.12, 459–467 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G., Zamzami N., Susin S.A.: Mitochondrial control of apoptosis.Immunol. Today18, 44–51 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kučerová H., Chaloupka J.: Intracellular serine proteinase behaves as a heat-stress protein in nongrowing but as a cold-stress protein in growing populations ofBacillus megaterium.Curr. Microbiol.31, 39–43 (1995).

    Article  PubMed  Google Scholar 

  • Lahiri B., Lai P.S., Pousada M., Stanton D., Danishefsky I.: Depolymerization of heparin by complexed ferrous ions.Arch. Biochem. Biophys.293, 54–60 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Lapshina E.A., Jaruga E., Bilinski T., Bartosz G.: What determines the antioxidant potential of yeast cells?Biochem. Mol. Biol. Internat.37, 903–908 (1995).

    CAS  Google Scholar 

  • Laval J.: Role of DNA repair enzymes in the cellular resistance to oxidative stress.Pathol. Biol.44, 14–24 (1996).

    PubMed  CAS  Google Scholar 

  • Lawrence G.D.: Ethylene formation from methionine and its analogs, pp. 157–163 inCRC Handbook for Oxygen Radical Research (R.A. Greenwald, Ed.), CRC Press, Boca Raton 1985.

    Google Scholar 

  • Lee C.L., Kang S.O.:d-erythro-Ascorbic acid is an important antioxidant molecule inS. cerevisiae.Mol. Microbiol.30, 895–903 (1999).

    Google Scholar 

  • Lee J.K., Kim J.M., Kim S.W., Nam Doo Hyun, Yong C.S., Huh K.: Effect of copper ion on oxygen damage in superoxide dismutase-deficientS. cerevisiae.Arch. Pharm. Res.19, 178–182 (1996).

    CAS  Google Scholar 

  • Lehmann Y., Meile L., Teuber M.: Rubrerythrin fromClostridium perfringens: cloning of the gene, purification of the protein, and characterization of its superoxide-dismutase function.J. Bacteriol.178, 7152–7158 (1996).

    PubMed  CAS  Google Scholar 

  • Leke N., Grenier D., Goldner M., Mayrand D.: Effect of hydrogen peroxide on growth and selected properties ofPorphyromonas gingivalis.FEMS Microbiol. Lett.174, 347–353 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lessuise E., Simon M., Klein R., Labbe P.: Excretion of anthranilate and 3-hydroxyanthranilate byS. cerevisiae: relationship to iron metabolism.J. Gen. Microbiol.138, 85–89 (1992).

    Google Scholar 

  • Lessuise E., Simon-Casteras M., Labbe P.: Siderophore-mediated iron uptake inS. cerevisiae: theSST1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily.Microbiology (UK)144, 3455–3462 (1998).

    Google Scholar 

  • Lesuisse E., Simon M., Klein R., Labbe P.: Excretion of anthranilate and 3-hydroxyanthranilate byS. cerevisiae: relationship to iron metabolism.J. Gen. Microbiol.138, 85–89 (1992).

    PubMed  CAS  Google Scholar 

  • Levin J.D., Johnson A.W., Demple B.: HomogeneousEscherichia coli endonuclease IV.J. Biol. Chem.236, 8066–8071 (1988).

    Google Scholar 

  • Levine A., Tenkaken R., Dixon R., Lamb C.: H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistant response.Cell79, 583–593 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Levine R.L., Oliver C.N., Fulks R.M., Stadtman E.R.: Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.Proc. Nat. Acad. Sci. USA78, 2120–2124 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R.: Determination of carbonyl content in oxidatively modified proteins.Meth. Enzymol.186, 464–478 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Levine R.L., Berlett B.S., Moskowitz J., Mosoni L., Stadtman E.R.: Methionine residues may protect proteins from critical oxidative damage.Mechan. Ageing Develop.107, 323–332 (1999).

    Article  CAS  Google Scholar 

  • Li B., Gutierrez P.L., Blough N.V.: Trace determination of hydroxyl radical using fluorescence detection.Meth. Enzymol.300, 202–216 (1999).

    PubMed  CAS  Google Scholar 

  • Li L., Kaplan J.: Characterization of two homologous yeast genes that encode mitochondrial iron transporters.J. Biol. Chem.272, 28485–28493 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Liebler D.C., Stratton S.P., Kaysen K.L.: Antioxidant actions of β-carotene in liposomal and microsomal membranes: role of carotenoid-membrane incorporation and α-tocopherol.Arch. Biochem. Biophys.338, 244–250 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ligr M., Madeo F., Fröhlich E., Hilt W., Fröhlich K.-U., Wolf D.: Mammalian Bax triggers apoptotic changes in yeast.FEBS Lett.438, 61–65 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Lin Y.J., Seroude L., Benzer S.: Extended life-span and stress resistance in theDrosophila mutant methuselah.Science282, 943–946 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Liu C.-J., Chopra A.K., Strnadová M., Chaloupka J.: Degradation of abnormal proteins in growing yeast.FEMS Microbiol. Lett.21, 313–317 (1984).

    Article  CAS  Google Scholar 

  • Liu S.: Generating, partitioning, targeting and functioning of superoxide in mitochondria.Biosci. Rep.17, 259–272 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ljungquist S., Lindahl T., Howard-Flanders P.: Methylmethanesulfonate-sensitive mutant ofEscherichia coli deficient in endonuclease specific for apurinic sites in deoxyribonucleic acid.J. Bacteriol.126, 646–653 (1976).

    PubMed  CAS  Google Scholar 

  • Longo V.D., Gralla E.B., Valentine J.S.: Superoxide dismutase activity is essential for stationary phase survival inSaccharomyces cerevisiae. Mitochondrial production of toxic oxygen speciesin vivo.J. Biol. Chem.271, 12275–12280 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Longo V.D., Ellerby L.N., Bredesen D.E., Valentine J.S., Gralla E.B.: Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast.J. Cell Biol.137, 1581–1588 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Longo V.D., Liou L.-L., Valentine J.S., Gralla E.B.: Mitochondrial superoxide decreases yeast survival in stationary phase.Arch. Biochem. Biophys.365, 131–142 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lowett C.M. Jr.,O'Gara T.M., Woodruff J.N.: Analysis of the SOS inducing signal inBacillus subtilis usingEscherichia coli LexA as a probe.J. Bacteriol.176, 4914–4923 (1994).

    Google Scholar 

  • Lundquist H., Dahlgren C.: Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils.Free Radicals Biol. Med.20, 785–792 (1996).

    Article  Google Scholar 

  • Lupo S., Aranda C., Miranda-Ham L., Olivera H., Riego L., Servin L., González A.: Tyrosine is involved in protection from oxidative stress inS. cerevisiae.Can. J. Microbiol.43, 963–970 (1997).

    PubMed  CAS  Google Scholar 

  • Luzzatto E., Cohen H., Stockheim C., Wieghardt K., Meyerstein D.: Reactions of low valent transition metal complexes with hydrogen peroxide. Are they “Fenton-like” or not?Free Radicals Res.23, 453–463 (1995).

    Article  CAS  Google Scholar 

  • Lynch M.C., Kuramitsu H.K.: Role of superoxide dismutase in physiology ofPorphyromonas gingivalis.Infect. Immun.67, 3367–3375 (1999).

    PubMed  CAS  Google Scholar 

  • Madeo F., Fröhlich E., Fröhlich K.-U.: A yeast mutant showing diagnostic markers of early and late apoposis.J. Cell Biol.139, 729–734 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Madeo F., Fröhlich E., Ligr M., Grey M., Sigrist S.J., Wolf D.H.: Oxygen stress: a regulator of apoptosis in yeast.J. Cell Biol.145, 757–767 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Marcillat O., Zhang Y., Lin S.W., Davies K.J.A.: Mitochondria contain a proteolytic system which can recognize and degrade oxidatively-denatured proteins.Biochem. J.254, 677–683 (1988).

    PubMed  CAS  Google Scholar 

  • Marquis R.E., Sim J., Shin S.Y.: Molecular mechanisms of resistance to heat and oxidative damage.J. Appl. Bacteriol.76, 40S-48S (1994).

    Google Scholar 

  • Mason C.A., Hamer G., Bryers J.D.: The death and lysis of microorganisms in environmental processes.FEMS Microbiol. Rev.39, 373–401 (1986).

    Article  CAS  Google Scholar 

  • Mason R.P.:In vitro andin vivo detection of free radical metabolites with electron spin resonance, pp. 11–24 inFree Radicals: A Practical Approach (N.A. Punchard, F.J. Kelly, Eds). Oxford University Press, Oxford 1996.

    Google Scholar 

  • Mason R.P.: Electron spin resonance investigations of free radical toxicology, pp. 1–27 inFree Radicals in Biology and Environment (F. Minisci, Ed.). Kluyver Academic Publishers, Dordrecht-Boston-London 1997.

    Google Scholar 

  • McKenna W.R., Mickelsen P.A., Sparling P.F., Dyer D.W.: Iron uptake from lactoferrin and transferrin byNeisseria gonorrhoeae.Infect. Immun.56, 785–791 (1988).

    PubMed  CAS  Google Scholar 

  • Meriin A.B., Yaglom J.A., Gabai V., Mosser D.D., Zon L., Sherman M.Y.: Protein-damaging stress activates c-Jun N-terminal kinasevia inhibition of its dephosphorylation: a novel pathway controlled by HSP72.Mol. Cell Biol.19, 2547–2555 (1999).

    PubMed  CAS  Google Scholar 

  • Michaels M.L., Miller J.H.: The GO system protects organisms from the mutagenic effects of the spontaneous lesion 8-hydroxy-guanine (7,8-dihydro-8-oxoguanine).J. Bacteriol.174, 6321–6325 (1992).

    PubMed  CAS  Google Scholar 

  • Mignotte B., Wayssiere J.-L.: Mitochondria and apoptosis.Eur. J. Biochem.252, 1–15 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Mishra O.P., Delivoria-Papadopoulos M., Cahillane G., Wagerle L.C.: Lipid peroxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K+, Na+, and strophanthidinin vitro.Neurochem. Res.14, 845–851 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Miyake T., Hazu T., Yoshida S., Kanayama M., Tomochika K., Shinoda S., Ono B.: Glutathione transport systems of the budding yeastS. cerevisiae.Biosci. Biotechnol. Biochem.62, 1858–1864 (1998).

    Article  PubMed  Google Scholar 

  • Mlakar A., Spiteller G.: 2-Hydroxysuccinaldehyde, a lipid peroxidation product proving that polyunsaturated fatty acids are able to react with three molecules of oxygen.Free Radicals Res.26, 57–62 (1997).

    CAS  Google Scholar 

  • Mohr S., Zech B., Lapetina E.G., Grüne B.: Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide.Biochem. Biophys. Res. Commun.238 387–391 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Moore M.M., Breedveld M.W., Autor A.P.: The role of carotenoids in preventing oxidative damage in the pigmented yeast,Rhodotorula mucilaginosa.Arch. Biochem. Biophys.270, 419–431 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Moore C.H., Foster L.-A., Gerbig D.G., Dyer D.W., Gibson B.W.: Identification of alcaligin as the siderophore produced byBordetella pertussis andBordetella bronchiseptica.J. Bacteriol.117, 1116–1118 (1995).

    Google Scholar 

  • Moradas-Ferreira P., Costa V., Piper P., Mager W.: The molecular defenses against reactive oxygen species in yeast.Mol. Microbiol.19, 651–658 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Nash H.M., Brunner S.D., Scharer O.D., Kawate T., Addona T.A., Spooner E., Lane W.S., Verdine G.L.: Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily.Curr. Biol.6, 968–980 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Nebe-von Caron G., Stephens P., Badley R.A.: Assessment of bacterial viability status by flow cytometry and single cell sorting.J. Appl. Microbiol.84, 988–998 (1998).

    Article  Google Scholar 

  • Newcomb T.G., Loeb L.A.: Oxidative DNA damage and mutagenesis, pp. 65–84 inDNA Damage and Repair, Vol. I. DNA Repair in Prokaryotes and Lower Eukaryotes (J.A. Nickoloff, M.F. Hoekstra, Eds) Humana Press, Fotowa (NJ) 1998.

    Google Scholar 

  • Niki E.: Free radical initiators as source of water- or lipid-soluble peroxyl radicals.Meth. Enzymol.186, 100–108 (1990).

    PubMed  CAS  Google Scholar 

  • Niven G.W., Mulholland F.: Cell membrane integrity and lysis inLactobacillus lactis: the detection of a population of permeable cells in post-logarithmic phase cultures.J. Appl. Microbiol.84, 90–96 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Noguchi N., Yamashita H., Gotoh, N., Yamamoto Y., Numano R., Niki E.: 2,2′-Azobis(4-methoxy-2,4-dimethylvaleronitrile), a new soluble azo initiator: application to oxidations of lipids and low-density lipoprotein in solution and in aqueous dispersions.Free Radicals Biol. Med.24, 259–268 (1997).

    Article  Google Scholar 

  • Nordmann R., Ribière C., Rouach H.: Ethanol-induced lipid peroxidation and oxidative stress in extrahepatic tissues.Alcohol & Alcoholism25, 231–237 (1990).

    CAS  Google Scholar 

  • Nyström T.: To be or not to be: the ultimate decision of the growth-arrested bacterial cell.FEMS Microbiol. Rev.21, 283–290 (1998).

    Article  Google Scholar 

  • Ohsumi Y., Kitamoto K., Anraku Y.: Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion.J. Bacteriol.170, 2676–2682 (1988).

    PubMed  CAS  Google Scholar 

  • Okada S., Zhang H., Hatano M., Tokuhisa T.: A physiological role of Bcl-x(L) induced in activated macrophages.J. Immunol.160, 2590–2596 (1998).

    PubMed  CAS  Google Scholar 

  • Olie R.A., Durrieu F., Cornillon S., Longran G., Gross J., Earnshow W.C., Goldstein P.: Apparent caspase independence of programmed cell death inDictyostelium.Curr. Biol.8, 955–958 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Oliver C.N., Levine R.E., Stadtman E.R.: A role of mixed-function oxidation reactions in the accumulation of altered enzyme forms during aging.J. Amer. Geriatrics Soc.35, 947–956 (1987).

    CAS  Google Scholar 

  • Osiewacz H.D.: Genetic regulation of aging.J. Mol. Med.75, 715–727 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ou P.M., Tritchler H.J., Wolff S.P.: Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant.Biochem. Pharmacol.50, 123–126 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Pahl H.L., Baeuerle P.A.: Oxygen and control of gene expression.Bioassays16, 497–502 (1994).

    Article  CAS  Google Scholar 

  • Palop A., Rutherford G.C., Marquis R.E.: Inactivation of enzymes within spores ofBacillus megaterium ATCC 19213 by hydroperoxides.Can. J. Microbiol.44, 465–470 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Papa S., Guerrieri F., Capitanio N.: A possible role of slips in cytochrome-c oxidase in the antioxygen defense system of the cell.Biosci. Rep.17, 23–31 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Patel M.P., Marcinkeviciene J., Blanchard J.S.:Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric O2 conditions.FEMS Microbiol. Lett.166, 155–163 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Pedersen K., Gerdes K.: Multiple hok genes on the chromosome ofEscherichia coli Mol. Microbiol.32, 1090–1102 (1992).

    Article  Google Scholar 

  • Perego P., Howell S.B.: Molecular mechanisms controlling sensitivity to toxic metal ions in yeast.Toxicol. Appl. Pharmacol.147, 312–318 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Petit P.X., Susin S.-A., Zamzami N., Mignotte B., Kroemer G.: Mitochondria and cell death: back to the future.FEBS Lett.396, 7–13 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Postgate J.R., Hunter J.R.: The survival of starved bacteria.J. Gen. Microbiol.29, 233–263 (1962).

    PubMed  CAS  Google Scholar 

  • Pressler U., Staudenmaier H., Zimmermann L., Braun V.: genetics of the iron dicitrate transport system ofEscherichia coli.J. Bacteriol.170, 2716–2724 (1988).

    PubMed  CAS  Google Scholar 

  • Pushkareva M., Obeid L.M., Hannum Y.A.: Ceramide: an endogenous regulator of apoptosis and growth suppression.Immunol. Today.16, 294–297 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Raguzzi F., Lessuise E., Crichton R.R.: Iron storage inS. cerevisiae.FEBS Lett.231, 253–258 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans C.A., Diplock A.T., Symoss M.C.R.:Tech. Free Radical Research. pp. 207–234. Elsevier, Amsterdam-London-New York-Tokyo 1991.

    Google Scholar 

  • Rice-Evans C., Sampson J., Bramley P.M., Holloway D.E.: Why do we expect carotenoids to be antioxidantsin vivo?Free Radicals Res.26, 381–398 (1997).

    Article  CAS  Google Scholar 

  • Ridgley E., Xiong Z., Ruben L.: Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organismTrypanosoma brucei.Biochem. J.340, 33–40 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Rikans L.E., Hornbrook K.R.: Lipid peroxidation, antioxidant protection and aging.Biochim. Biophys. Acta1362, 116–127 (1997).

    PubMed  CAS  Google Scholar 

  • Rocha E.R., Selby T., Coleman J.P., Smith C.J.: Oxidative stress response in an anaerobe,Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide.J. Bacteriol.178, 6895–6903 (1996).

    PubMed  CAS  Google Scholar 

  • Rocha E.R., Smith C.J.: Regulation ofBacteroides fragilis katB mRNA by oxidative stress and carbon limitation.J. Bacteriol.179, 7033–7039 (1997).

    PubMed  CAS  Google Scholar 

  • Rocha E.R., Smith C.J.: Characterization of a peroxide-resistant mutant of the anaerobic bacteriumBacteroides fragilis.J. Bacteriol.180, 5906–5912 (1998).

    PubMed  CAS  Google Scholar 

  • Roldan-Arjona T., Anselmino C., Lindahl T.: Molecular cloning and functional analysis of aSchizosaccharomyces pombe homologue ofEscherichia coli endonuclease III.Nucl. Acids Res.24, 3307–3312 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Roze L.V., Linz J.E.: Lovastain triggers an apoptosis-like cell death in the fungusMucor racemosus.Fungal Genet. Biol.25, 119–133 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sakagami H., Kuribayashi N., Iida M., Hagiwara T., Takahashi H., Yoshida H., Shiota F., Ohata H., Momose K., Takeda M.: The requirement for and mobilization of calcium during induction by sodium ascorbate and by hydrogen peroxide of cell death.Life Sci.58, 1131–1138 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T., Delgaizo V.B., Bryant D.A. Growth on urea can trigger death and peroxidation of the cyanobacteriumSynechococcus sp. strain PC 7002.Appl. Environ. Microbiol.64, 2361–2366 (1998).

    PubMed  CAS  Google Scholar 

  • Santiago L.A., Mori A.: Antioxidant defenses of baker's yeast against free radicals and lipid peroxides in rat brain.Arch. Biochem. Biophys.306, 16–21 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Santos-Ocana C., Córdoba F., Crane F.L., Clarke C.F., Navas P.: Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane ofS. cerevisiae.J. Biol. Chem.273, 8099–8105 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Saran M., Bors W.: Direct and indirect measurements of oxygen radicals.Klin. Wochenschr.69, 957–964 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Saran M., Michel C., Bors W.: Radical functionsin vivo: a critical review of current concepts and hypothesesZ. Naturforsch.53c, 210–227 (1998).

    Google Scholar 

  • Schroeder W.A., Johnson E.A.: Antioxydant role of carotenoids inPhaffia rhodozyma.J. Gen. Microbiol.139, 907–912 (1993).

    CAS  Google Scholar 

  • Schubert J., Wilmer J.W.: Does hydrogen peroxide exist “free” in biological systems?Free Radicals Biol. Med.11 545–555 (1991).

    Article  CAS  Google Scholar 

  • Sen S.: Programmed cell death: concept, mechanism and control.Biol. Rev.67, 287–319 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Shaham S., Schuman M.A., Herskowitz I.: Death-defying yeast identify novel apoptosis genes.Cell92, 425–427 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Shamsi F.A., Hadi S.M.: Photoinduction of strand scission in DNA by uric acid and Cu(II).Free Radicals Biol. Med.19, 189–196 (1995).

    Article  CAS  Google Scholar 

  • Shen B., Jensen R.G., Bohnert H.J.: Mannitol protects against oxidation by hydroxyl radicals.Plant Physiol.115, 527–532 (1997).

    PubMed  CAS  Google Scholar 

  • Siegele D.A., Kolter R.: Life after log.J. Bacteriol.174, 345–348 (1992).

    PubMed  CAS  Google Scholar 

  • Sies H.: Biochemistry of oxidative stress.Angew. Chem. Internat. Edn. Engl.25, 1058–1071 (1986).

    Article  Google Scholar 

  • Sies H.:Oxidative Stress: Oxidants and Antioxidants. Academic Press, London 1993.

    Google Scholar 

  • Sies H.: Impaired endothelial and smooth muscle cell function in oxidative stress.Exp., Physiol.82, 291–295 (1997).

    CAS  Google Scholar 

  • Sigler K., Gille G.: Stability and refractoriness of the high catalase activity in the oxidative-stress-resistant fission yeastSchizosac-charomyces pombe Folia Microbiol.43, 369–372 (1998).

    CAS  Google Scholar 

  • Sigler K., Gille G., Vacata V., Stadler N., Höfer M.: Inactivation of the plasma membrane ATPase ofSchizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradicalvs. radical-induced oxidation.Folia Microbiol.43, 361–367 (1998a).

    CAS  Google Scholar 

  • Sigler K., Denksteinová B., Gášková D., Stadler N., Radovanović N., Höfer M.: Effect of stressors on yeast plasma membrane integrity, proton gradient and H+-ATPase function.Folia Microbiol.43, 229–230 (1998b).

    Google Scholar 

  • Simizu S., Takada M., Umezawa K., Imoto M.: Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs.J. Biol. Chem.273, 26900–26907 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sinclair D.A., Mills K., Guarente L.: Molecular mechanisms of yeast aging.Trends Biochem. Sci.23, 131–134 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Skoneczny M., Chelstowska A., Rytka J.: Study of the coinduction by fatty acids of catalase A and acyl-CoA oxidase in standard and mutantS. cerevisiae strains.Eur. J. Biochem.174, 297–302 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Skulachev V.P.: Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell.FEBS Lett.397, 7–10 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Skulachev V.P.: Cytochromec in the apoptotic and antioxidant cascades.FEBS Lett.423, 275–280 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N.: The function and metabolism of ascorbic acid in plants.Ann. Bot.78, 661–669 (1996).

    Article  CAS  Google Scholar 

  • Smith D.W., Hanawalt P.C.: Macromolecular synthesis and thymineless death inMycoplasma laidlawii B.J. Bacteriol96, 2066–2076 (1968).

    PubMed  CAS  Google Scholar 

  • Smith J.R., Pereira-Smith O.M.: Replicative senescence.: implications forin vivo aging and tumor suppression.Science273, 63–67 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Sohal R.S., Allen R.G.: Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis.Exp. Gerontol25, 499–522 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Sohal R.S., Weindruch R.: Oxidative stress, caloric restriction and aging.Science273, 59–63 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Soszyński M., Bartosz G.: Decrease in accessible thiols as an index of oxidative damage to membrane proteins.Free Radicals Biol. Med.23, 463–469 (1997).

    Article  Google Scholar 

  • Stadtman E.R.: Oxidation of proteins by mixed function oxidation systems: implication in protein turnover, aging and neutrophil function.Trends Biochem. Sci.11, 11–12 (1986).

    Article  CAS  Google Scholar 

  • Stadtman E.R.: Protein oxidation and aging.Science257, 1220–1224 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Stahl W., Sies H.: Antioxidant defense: vitamins E and C and carotenoids.Diabetes46 (Suppl. 2), S14-S17 (1997).

    PubMed  CAS  Google Scholar 

  • Stephen D.W.S., Jamieson D.J.: Glutathione is an important antioxidant molecule in the yeastS. cerevisiae.FEMS Microbiol. Lett.141, 207–212 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Stephens C.: Bacterial sporulation: a question of commitment?Curr. Biol.8, R45-R48 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Stewart E.J., Aslund F., Beckwith J.: Disulfide bond formation in theEscherichia coli cytoplasm: anin vivo role reversal for the thioredoxins.EMBO J.17, 5543–5550 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Stewart M.C., Olson B.H: Physiological studies of chloramine resistance developed byKlebsiella pneumoniae under low-nutrient growth conditions.Appl. Environ. Microbiol.58, 2918–2927 (1992).

    PubMed  CAS  Google Scholar 

  • Storz G., Tartaglia L.A., Farr S.B., Ames B.N.: Bacterial defences against oxidative stress.Trends Genet.6, 363–368 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Streiblová E.: Study of scar formation in the life cycle of heterothallicSaccharomyces cerevisiae.Can. J. Microbiol.16, 827–831 (1970).

    Article  PubMed  Google Scholar 

  • Strnadová M., Votruba J., Chaloupka J.: Turnover kinetics of proteins labeled in different sporulation phases ofBacillus megaterium.Folia Microbiol.37, 163–168 (1992).

    Google Scholar 

  • Suzuki Y.J., Edmondson J.D., Ford G.D.: Inactivation of rabbit muscle creatine kinase by hydrogen peroxide.Free Radicals Res. Commun.16, 131–136 (1992).

    Article  CAS  Google Scholar 

  • Taborsky G.: Oxidative modification of proteins in the presence of ferrous ion and air. Effect of ionic constituents of the reaction medium on the nature of the oxidation products.Biochemistry12, 1341–1348 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T., Nakaya Y., Kato N., Watanabe K., Morimoto K.: Induction of oxidative DNA damage in anaerobes.FEBS Lett.450, 178–180 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Tamarit J., Cabiscol E., Ros J.: Identification of the major oxidatively damaged proteins inEscherichia coli cells exposed to oxidative stress.J. Biol. Chem.273, 3027–3032 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Tanioka S., Matsui Y., Irie T., Tanigawa T., Tanaka Y., Shibata H., Sawa Y., Kono Y.: Oxidative depolymerization of chitosan by hydroxyl radical.Biosci. Biotech. Biochem.60, 2001–2004 (1996).

    Article  CAS  Google Scholar 

  • Tao W., Kurschner C., Morgan J.I.: Modulation of cell death in yeast by the Bcl-2 family of proteins.J. Biol. Chem.272, 15547–15552 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Tesoriere L., Bongiorno A., Pintaudi A.M., Anna R.D., Arpa D.D., Livrea, M.A.: Synergistic interactions between vitamin A and vitamin E against lipid peroxidation in phosphatidylcholine liposomes.Arch. Biochem. Biophys.326, 57–63 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Thomas D., Scott A.D., Barbey R., Padula M., Boiteux S.: Inactivation ofOGGI increases incidence of GC-TA transversions inSaccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells.Mol. Gen. Genet.254, 171–178 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Toledo I., Aguirre J., Hansberg W.: Enzyme inactivation related to a hyperoxidant stage during conidiation ofNeurospora crassa.Microbiology (UK)140, 2391–2397 (1994).

    CAS  Google Scholar 

  • Toledo I., Hansberg W.: Protein oxidation related to morphogenesis inNeurospora crassa.Exp. Mycol.14, 184–189 (1990).

    Article  CAS  Google Scholar 

  • Tsuchihashi H., Kigoshi M., Iwatsuki M., Niki E.: Action of β-carotene as an oxidant against lipid peroxidation.Arch. Biochem. Biophys.323, 137–147 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y.: Apoptosis and necrosis: intracellular ATP levels as a determinant for cell death modes.Cell Death Different4, 429–434 (1997).

    Article  CAS  Google Scholar 

  • Uchida K., Kawakishi S.: Oxidative degradation of β-cyclodextrin induced by an ascorbic acid-copper ion system.Agric. Biol. Chem.50, 367–373 (1986a).

    CAS  Google Scholar 

  • Uchida K., Kawakishi S.: Oxidative depolymerization of polysaccharides induced by the ascorbic acid-copper ion systems.Agric. Biol. Chem.50, 2579–2583 (1986b).

    CAS  Google Scholar 

  • Váchová L., Kučerová H., Benešová J., Chaloupka J.: Heat and osmotic stress enhance the development of cytoplasmic serine proteinase activity in sporulatingBacillus megaterium.Biochem. Mol. Biol. Internat.32, 1049–1057 (1994).

    Google Scholar 

  • Valentine J.S., Wertz D.L., Lyons T.J., Liou L.-L., Goto J.J., Gralla E.B.: The dark side of dioxygen biochemistry.Curr. Opinion Chem. Biol.2, 253–262 (1998).

    Article  CAS  Google Scholar 

  • Van Acker S.A.B.E., van den Berg D.-J., Tromp M.N.J.L., Griffioden D.H, van Bennekom W.P., van der Vugh W.J.F., Bast A.: Structural aspects of antioxidant activity of flavonoids.Free Radicals Biol. Med.20, 331–342 (1996).

    Article  Google Scholar 

  • Van der Kemp P.A., Thomas D., Barbey R., De Oliveira, R., Boiteux S.: Cloning and expression inEscherichia coli of theOGG1 gene ofSaccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine.Proc. Nat. Acad. Sci. USA93, 5197–5202 (1996).

    Article  PubMed  Google Scholar 

  • Vile G.F., Rothwell L.A., Kettle A.J.: Hypochlorous acid activates the tumor suppressor protein p53 in cultured human skin fibroblasts.Arch. Biochem. Biophys.359 51–56 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Visick J.E., Clarke S.: Repair, refold, recycle: how bacteria can deal with spontaneous and environmental damage to proteins.Mol. Microbiol.16, 835–845 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Wang J.Y.J.: Cellular responses to DNA damage.Curr. Opin. Cell. Biol.10, 240–247 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wei Y.-H.: Oxidative stress and mitochondrial DNA mutation in human aging.Proc. Soc. Exp. Biol. Med.217, 53–63 (1998).

    PubMed  CAS  Google Scholar 

  • Weiss, B.: Endonuclease II ofEscherichia coli is exonuclease III.J. Biol. Chem.251, 1896–1901 (1976).

    PubMed  CAS  Google Scholar 

  • Welburg S.C., Barcinski N.A., Williams G.T.: Programmed cell death in trypanosomatides.Parasitol. Today13, 22–25 (1997).

    Article  Google Scholar 

  • West S.C.: Enzymes and molecular mechanisms of genetic recombination.Ann. Rev. Biochem.61, 603–640 (1992).

    Article  PubMed  CAS  Google Scholar 

  • West W.: Introductory survey of molecular spactra, p. 37 in W. West (Ed.):Technique in Organic Chemistry, Vol. 9. Chemical Applications of Spectroscopy. Interscience Publishers, New York-London 1956.

    Google Scholar 

  • Willie A.H.: Apoptosis and carcinogenesis.,Eur. J. Cell Biol.73, 189–197 (1997).

    Google Scholar 

  • Winterbourn C.C.: Toxicity of iron and hydrogen peroxide: the Fenton reaction.Toxicol. Lett.82–83, 969–974 (1995).

    Article  PubMed  Google Scholar 

  • Wiśnicka R., Krzepilko A., Wawryn J., Krawiec Z., Biliński T.: Protective role of superoxide dismutase in iron toxicity in yeast.Biochem. Mol. Biol. Internat.44, 635–641 (1998).

    Google Scholar 

  • Wolff S.P., Dean R.T.: Glucose autoxidation and protein modification.Biochem. J.245, 243–250 (1987).

    PubMed  CAS  Google Scholar 

  • Wright N.E., Han D.K., Carter L., Fields S., Schwartz S.M., Hockenbery D.M.: Caspase-3 inhibits growth ofSaccharomyces cerevisiae without causing cell death.FEBS Lett.446, 9–14 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Xu Z.U., Wickner W.: Thioredoxin is required for vacuole inheritance inS. cerevisiae.J. Cell Biol.132, 787–794 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Xu C., Zhou T., Kuroda M., Rosen B.P.: Metalloid resistance mechanism in prokaryotes.J. Biochem.123, 16–23 (1998).

    PubMed  CAS  Google Scholar 

  • Yamano S., Maruyama T.: An azide-insensitive superoxide dismutase from a hyperthermophilic archeon,Sulfobolus solfatarius.J. Biochem.125, 186–193 (1999).

    PubMed  CAS  Google Scholar 

  • Yang M.-H., Schaich K.M.: Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes.Free Radicals Biol. Med.20, 225–236 (1996).

    Article  CAS  Google Scholar 

  • Yao Y., Yin D., Jas G.S., Kuczera K., Williams T.D., Schöneich H.C., Squier T.C.: Oxidative modification of a carbonyl-teminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase.Biochemistry35, 2767–2787 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Yin Y., Terauchi Y., Solomon G.G., Aizawa S., Rangarian P.N., Yazaki Y., Kadowaki T., Barrett J.C.: Involvement of p85 in p53-dependent apoptotic response to oxidative stress.Nature391, 707–710 (1998).

    Article  PubMed  CAS  Google Scholar 

  • You H.J., Swanson L., Doetsch P.W.:Saccharomyces cerevisiae possesses two functional homologues ofEscherichia coli endonuclease III.Biochemistry37, 6033–6040 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Żadziński R., Fortuniak A., Biliński T., Grey M., Bartosz G.: Menadione toxicity inS. cerevisiae cells: activation by conjugation with glutathione.Biochem. Mol. Biol. Internat.44, 747–759 (1998).

    Google Scholar 

  • Zähringer H., Burgert M., Holzer H., Nwaka S.: Neutral trehalse Nth lp ofS. cerevisiae encoded by theNTHI gene is a multiple stress responsive protein.FEBS Lett.412, 615–620 (1997).

    Article  PubMed  Google Scholar 

  • Zha H., Reed J.C.: Heterodimerization—independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells.J. Biol. Chem.272, 31482–31488 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K.J.A.: The oxidative inactivation of mitochondrial electron transport chain components.J. Biol. Chem.265, 16330–16336 (1990).

    PubMed  CAS  Google Scholar 

  • Zhao M.J., Jung L.: Kinetics of the competitive degradation of deoxyribose and other molecules by hydroxyl radicals produced by the Fenton reaction in the presence of assorbic acid.Free Radicals Res.23, 229–243 (1995).

    Article  Google Scholar 

  • Zheng M., Doan B., Schneider T.D, Storz G.: OxyR and SoxRS regulation of fur.J. Bacteriol.181, 4639–4643 (1999).

    PubMed  CAS  Google Scholar 

  • Zhulin I.B., Johnson M.S., Taylor B.L.: How do bacteria avoid high oxygen concentrations?Biosci. Rep.17, 335–342 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigler, K., Chaloupka, J., Brozmanová, J. et al. Oxidative stress in microorganisms—I. Folia Microbiol 44, 587–624 (1999). https://doi.org/10.1007/BF02825650

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02825650

Keywords

Navigation