Skip to main content
Log in

Continuum modelling and numerical simulation of material damage at finite strains

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

This paper describes in detail a general framework for the continuum modelling and numerical simulation of internal damage in finitely deformed solids. The development of constitutive models for material deterioration is addressed within the context of Continuum Damage Mechanics. Links between micromechanical aspects of damage and phenomenological modelling within continuum thermodynamics are discussed and a brief historical review of Continuum Damage Mechanics is presented. On the computational side, an up-to-date approach to the finite element solution of large strain problems involving dissipative materials is adopted. It relies on an implicit finite element discretization set on the spatial configuration in conjunction with the full Newton-Raphson scheme for the iterative solution of the corresponding non-linear systems of equations. Issues related to the numerical integration of the path dependent damage constitutive equations are discussed in detail and particular emphasis is placed on the consistent linearization of associated algorithms. A model for elastic damage in polymers and finite strain extensions to Lemaitre's and Gurson's models for ductile damage in metals are formulated within the described framework. The adequacy of the constitutive-numerical framework for the simulation of damage in large scale industrial problems is demonstrated by means of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.H. Allen, E. Harris and S.E. Groves (1987), “A thermomechanical constitutive theory for clastic composites with distributed damage—I. Theoretical development and II. Application to matrix cracking in laminated composites”,Int. J. Solids Struct.,23(9), 1301–1338.

    Article  MATH  Google Scholar 

  2. R.G.C. Arridge (1985),An Introduction to Polymer Mechanics, Taylor & Francis, London.

    Google Scholar 

  3. M. Basista, D. Krajčinović, and D. Šumarac (1992), “Micromechanics, phenomenology and statistics of brittle deformation”, In D.R.J. Owen, E. Oñate, and E. Hinton, editors,Proceedings of the Third International Conference on Computational Plasticity: Fundamentals and Applications—Barcelona, April 1992, pages 1479–1490, Swansca, Pincridge Press.

    Google Scholar 

  4. K.J. Bathe (1982),Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  5. M.F. Beatty (1987), “Topics in finite clasticity: Hyperelasticity of rubber, clastomers, and biological tissues—with examples”,Appl. Mech. Rev.,40, 1699–1734.

    Google Scholar 

  6. A. Benallal, R. Billardon, and I. Doghri (1988), “An integration algorithm and the corresponding consistent tangent operator for fully coupled elastoplastic and damage equations”,Comm. Appl. Num. Meth.,4, 731–740.

    Article  MATH  Google Scholar 

  7. F. Bueche (1960), “Molecular basis for the Mullins effect”,J. Appl. Poly. Sci.,4(10), 107–114.

    Article  Google Scholar 

  8. F. Bueche (1961), “Mullins effect and rubber-filler interaction”,J. Appl. Poly. Sci.,5(15), 271–281.

    Article  Google Scholar 

  9. J.L. Chaboche (1978), “Description thermodynamique et phénoménoloque de la viscoplasticité cyclique avec endommagement”, Technical Report 1978-3, Office National d'Etudes et de Recherches Aérospatiales.

  10. J.L. Chaboche (1981), “Continuous damage mechanics—a tool to describe phenomena before, crack initiation”,Nuclear Engng. Design,64, 233–247.

    Article  Google Scholar 

  11. J.L. Chaboche (1984), “Anisotropic creep damage in the framework of continuum damage mechanics”,Nuclear Engng. Design,79, 309–319.

    Article  Google Scholar 

  12. J.L. Chaboche (1988), “Continuum damage mechanics: Part I—General concepts and Part II—Damage growth crack initiation and crack growth”,J. Appl Mech.,55, 59–72.

    Google Scholar 

  13. C.L. Chow and T.J. Lu (1989), “On evolution laws of anisotropic damage”,Engng. Fract. Mech.,34(3), 679–701.

    Article  Google Scholar 

  14. B.D. Coleman (1964), “Thermodynamics of materials with memory”,Arch. Rat. Mech. Anal.,17, 1–46.

    Google Scholar 

  15. B.D. Coleman and M.E. Gurtin (1967), “Thermodynamics with internal state variables”,J. Chemical Physics,47(2), 597–613.

    Article  Google Scholar 

  16. B.D. Coleman and W. Noll (1963), “The thermodynamics of elastic materials with heat conduction and viscosity,”,Arch. Rat. Mech. Anal.,13, 167–178.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.P. Cordebois (1983),Criteres d'Instabilite Plastique et Endommagement Ductile en Grandes Deformations, Thèse de Doctorat d'Etat, Univ. Pierre et Marie Curie.

  18. J.P. Cordebois and F. Sidoroff (1979), “Damage induced elastic anisotropy”, InEuromech 115 —Villard de Lans—Juin 1979, pages 761–774.

  19. J.P. Cordebois and F. Sidoroff (1982). “Endomagement anisotrope en élasticité et plasticité”,Journal de Mécanique Théorique et Appliquée, pages 45–60. Numéro spécial.

  20. M.A. Crisfield (1991),Non-linear Finite Element Analysis of Solids and Structures, Volume 1: Essentials. John Wiley & Sons, Chichester.

    Google Scholar 

  21. A. Cuitiño and M. Ortiz (1992), “A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics”,Engng. Comp.,9, 437–451.

    Article  Google Scholar 

  22. I. Doghri (1995), “Numerical implementation and analysis of a class of metal plasticity models coupled with ductile damage”,Int. J. Num. Meth. Engng.,38, 3403–3431.

    Article  MATH  Google Scholar 

  23. A. Dragon and A. Chihab (1985), “On finite damage: Ductile fracture-damage evolution”,Mech. of Materials,4, 95–106.

    Article  Google Scholar 

  24. L. Engel and H. Klingele (1981).An Atlas of Metal Damage. Wolfe Science Books.

  25. A.L. Eterovic and K.-J. Bathe (1990), “A hyperelastic based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures”,Int. J. Num. Meth. Engng.,30, 1099–1114.

    Article  MATH  Google Scholar 

  26. G.U. Fonseka and D. Krajčinović (1981), “The continuous damage theory of brittle materials —Part 2: Uniaxial and plane response modes”,J. Appl. Mech.,48, 816–824.

    MATH  Google Scholar 

  27. J.C. Gelin and A. Danescu (1992), “Constitutive model and computational strategies for finite-strain elasto-plasticity with isotropic or anisotropic ductile damage”, In D.R.J. Owen, E. Oñate, and E. Hinton, editors,Proceedings of the Third International Conference on Computational Plasticity: Fundamentals and Applications—Barcelona, April 1992, pages 1413–1424, Swansea, Pineridge Press.

    Google Scholar 

  28. J.C. Gelin and A. Mrichcha (1992), “Computational procedures for finite strain elasto plasticity with isotropic damage”, In D.R.J. Owen, E. Oñate, and E. Hinton, editors,Proceedings of the Third International Conference on Computational Plasticity: Fundamentals and Applications —Barcelona, April 1992, pages 1401–1412, Swansea, Pineridge Press.

    Google Scholar 

  29. O.V.J. Gonçalves F. and D.R.J. Owen (1983), “Creep and viscoelastic brittle rupture of structures by the finite element method” In B. Wilshire and D.R.J. Owen, editors,Engineering Approach to High Temperature Design, Swansca, Pineridge Press.

    Google Scholar 

  30. S. Govindjee and J. Simo (1991), “A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins' effect”,J. Mech. Phys. Solids,39(1), 87–112.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Govindjee and J.C. Simo (1992), “Mullins' effect and the strain amplitude dependence of the storage modulus”,Int. J. Solids Structures,20, 1737–1751.

    Article  Google Scholar 

  32. A.L. Gurson (1977), “Continuum theory of ductile rupture by void nucleation and growth—Part I: Yield criteria and flow rule for porous media”,J. Engng. Mat. Techn.,99, 2–15.

    Google Scholar 

  33. M.E. Gurtin (1981).An Introduction to Continuum Mechanics. Academic Press.

  34. M.E. Gurtin and E.C. Francis (1981), “Simple rate-independent model for damage”,J. Spacecroft,18(3), 285–286.

    Article  Google Scholar 

  35. M.E. Gurtin and K. Spear (1983), “On the relationship between the logarithmic strain rate and the stretching tensor”,Int. J. Solids Struct.,19(5), 437–444.

    Article  MathSciNet  MATH  Google Scholar 

  36. M.E. Gurtin and O.W. Williams (1967), “An axiomatic foundation of continuum thermodynamics”,Arch. Rat. Mech. Anal.,27, 83–117.

    Article  MathSciNet  Google Scholar 

  37. H. Hencky (1933), “The elastic behavior of vulcanized rubber”,J. Appl. Mech.,1, 45–53.

    Google Scholar 

  38. G. Herrmann and J. Kestin (1989), “On thermodynamic foundations of a damage theory in elastic solids”, In J. Mazars and Z.P. Bazant, editors,Cracking and Damage, Strain Localization and Size Effect, pages 228–232, Amsterdam, Elsevier.

    Google Scholar 

  39. R. Hill (1950),The Mathematical Theory of Plasticity. Oxford Univ. Press, London.

    MATH  Google Scholar 

  40. A. Hoger (1986), The material time derivative of the logarithmic strain,Int. J. Solids Struct.,22(9), 1019–1032.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Hoger (1987), “The stress conjugate to logarithmic strain”,Int. J. Solids Struct.,23(12), 1645–1656.

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Horii and S. Nemat-Nasser (1983), “Overall moduli of solids with microcracks: Load induced anisotropy”,J. Mech. Phys. Solids,31(2), 155–171.

    Article  MATH  Google Scholar 

  43. J. Janson (1978), “A continuous damage approach to the fatigue process”,Engng. Fract. Mech.,10, 651–657.

    Article  Google Scholar 

  44. L.M. Kachanov (1958), “Time of the rupture process under creep condition”,Izv. Akad. Nauk. SSSR. Otd. Tekhn. Nauk.,8, 26–31.

    Google Scholar 

  45. L.M. Kachanov (1977), “Creep and rupture under complex loading”,Problemi Prochnosti,6.

  46. J. Kestin and J. Bataille (1977), “Irreversible thermodynamics of continua and internal variables”, InProceedings of the Int. Symp. on Continuum Models of Discrete Systems, pages 39–67, Univ of Waterloo Press.

  47. D. Krajčinović (1983), “Constitutive equations for damaging materials”J. Appl. Mech.,50. 355–360.

    MATH  Google Scholar 

  48. D. Krajčinović (1985), “Continuos, damage mechanics revisited: Basic concepts and definitions”,J. Appl. Mech.,52, 829–834.

    Google Scholar 

  49. D. Krajčinović (1989), “Damage mechanics”,Mech. of Materials,8, 117–197.

    Article  Google Scholar 

  50. D. Krajčinović and G.U. Fonseka (1981), “The continuous damage theory of brittle materials —Part 1: General theory”,J. Appl. Mech.,48, 809–815.

    MATH  Google Scholar 

  51. F.A. Leckie and D.R. Hayhurst (1974), “Creep rupture of structures”,Proc. Roy. Soc. Lond. A,340, 323–347.

    MATH  Google Scholar 

  52. F.A. Leckie and E.T. Onat (1981), “Tensorial nature of damage measuring internal variables”, InProceedings of the IUTAM Symposium on Physical Nonlinearities in Structures, pages 140–155, Springer.

  53. E.H. Lee (1969), “Elastic-plastic deformation at finite strains”,J. Appl. Mech.,36, 1–6.

    MATH  Google Scholar 

  54. J. Lemaitre (1983), “A three dimensional ductile damage model applied to deep-drawing forming limits”, InICM 4 Stockholm. Volume2, pages 1047–1053.

  55. J. Lemaitre (1984), “How to use damage mechanics”,Nuclear Engng. Design,80, 233–245.

    Article  Google Scholar 

  56. J. Lemaitre (1985), “A continuous damage mechanics model for ductile fracture”,J. Engng. Mat. Tech.,107, 83–89.

    Article  Google Scholar 

  57. J. Lemaitre (1985), “Coupled elasto-plasticity and damage constitutive equations”,Comp. Meth. Appl. Mech. Engng.,51, 31–49.

    Article  MATH  Google Scholar 

  58. J. Lemaitre (1987), “Formulation and identification of damage kinetic constitutive equations”, In D. Krajčinović and J. Lemaitre, editors,Continuum Damage Mechanics: Theory and Applications, pages 37–89, Springer-Verlag.

  59. J. Lemaitre (1990), “Micro-mechanics of crack initiation”,Int. J. Fracture,42, 87–99.

    Article  Google Scholar 

  60. J. Lemaitre and J.L. Chaboche (1990),Mechanics of Solid Materials, Cambridge Univ. Press.

  61. J. Lemaitre and J. Dufailly (1987), “Damage measurements”,Engng. Fract. Mech.,28(8), 643–661.

    Article  Google Scholar 

  62. J.E. Mark (1984), “The rubber clastic state”, InPhysical Properties of Polymers, pages 1–54, Washington, American Chemical Society.

    Google Scholar 

  63. D. Marquis and J. Lemaitre (1988), “Constitutive equations for the coupling between clasto-plasticity damage and aging”,Revue Phys. Appl.,23, 615–624.

    Google Scholar 

  64. F. A. McClintock (1968), “A criterion for ductile fracture by the growth of holes”,J. Appl. Mech.,35, 363–371.

    Google Scholar 

  65. G.P. Mitchell (1990),Topics in the Numerical Analysis of Inelastic Solids, PhD thesis. Dept. of Civil Engineering, Univ. Coll. of Swansea.

  66. B. Moran, M. Ortiz, and F. Shih (1990), “Formulation of implicit finite element methods for multiplicative finite deformation plasticity”,Int. J. Num. Meth. Engng.,29, 483–514.

    Article  MathSciNet  MATH  Google Scholar 

  67. L. Mullins (1969), “Softening of rubber by deformation”,Rubber Chemistry and Technology,42, 339–351.

    Google Scholar 

  68. S. Murakami (1987), “Anisotropic aspects of material damage and application of continuum damage mechanics”, In D. Krajčinović and J. Lemaitre, editors,Continuum Damage Mechanics: Theory and Applications, pages 91–133, Springer-Verlag.

  69. S. Murakami (1988), “Mechanical modeling of material damage”,J. Appl. Mech.,55, 280–286.

    Google Scholar 

  70. S. Murakami and T. Imaizumi (1982), “Mechanical description of creep damage state and its experimental verification”,Journal de Mécanique Théorique et Appliquée,1(5), 743–761.

    MATH  Google Scholar 

  71. S. Murakami and N. Ohno (1981), “A continuum theory of creep and creep damage”, In A.R.S. Ponter (ed.),Proceedings of the IUTAM Symposium on Creep in Structures, Leicester, 1980, pages 422–443, Berlin, Springer.

    Google Scholar 

  72. J.C. Nagtegaal (1982), “On the implementation of inclastic constitutive equations with special reference to large deformation problems”,Comp. Meth. Appl. Mech. Engng.,33, 469–484.

    Article  MATH  Google Scholar 

  73. E. Nemat-Nasser (1982), “On finite deformation elasto-plasticity”,Int. J. Solids Structures,18(10), 857–872.

    Article  MATH  Google Scholar 

  74. E. Ofiate, M. Kleiber, and C. Ageler de Saracibar (1988), “Plastic and viscoplastic flow of void-containing metals. Applications to axisymmetric sheet forming problems”,Int. J. Num. Meth. Engng.,25, 227–251.

    Article  Google Scholar 

  75. J.T. Oden (1972),Finite Elements of Nolinear Continua, McGraw-Hill, London.

    Google Scholar 

  76. R.W. Ogden (1972), “Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids”,Proc. R. Soc. Lond. A,326, 565–584.

    MATH  Google Scholar 

  77. R.W. Ogden (1984),Non-Linear Elastic Deformations, Ellis Horwood, Chichester.

    Google Scholar 

  78. E.T. Onat (1986), “Representation of mechanical behaviour in the presence of internal damage”,Engng. Fract. Mech.,25, 605–614.

    Article  Google Scholar 

  79. E.T. Onat and F.A. Leckie (1988), “Representation of mechanical behavior in the presence of changing internal structure”,J. Appl. Mech.,55, 1–10.

    Google Scholar 

  80. M. Ortiz and E.P. Popov (1985), “Accuracy and stability of integration algorithms for clastoplastic constitutive relations”,Int. J. Num. Meth. Engng.,21, 1561–1576.

    Article  MathSciNet  MATH  Google Scholar 

  81. D.R.J. Owen and E. Hinton (1980),Finite Elements in Plasticity: Theory and Practice, Pineridge Press, Swansea.

    MATH  Google Scholar 

  82. D. Perić (1993), “On a class of constitutive equations in viscoplasticity: Formulation and computational issues”,Int. J. Num. Meth. Engng.,36, 1365–1393.

    Article  MathSciNet  MATH  Google Scholar 

  83. D. Perić and D.R.J. Owen (1992), “Computational model for 3-D contact problems with friction based on the penalty method”,Int. J. Num. Meth. Engng.,35, 1289–1309.

    Article  MATH  Google Scholar 

  84. D. Perić and D.R.J. Owen (1992), “A model for large deformation of clasto-viscoplastic solids at finite strains: Computational issues”, In D. Besdo and E. Stein, editors,Proceedings of the IUTAM Symposium on Finite Inelastic Deformations—Theory and Applications, pages 299–312, Berlin, Springer.

    Google Scholar 

  85. D. Perić, D.R.J. Owen, and M.E. Honnor (1992), “A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues”,Comp. Meth. Appl. Mech Engng.,94, 35–61.

    Article  MATH  Google Scholar 

  86. Y.N. Rabotnov (1963), “On the equations of state for creep”, InProgress in Applied Mechanics, Prayer Anniversary Volume, page 307, New York, MacMillan.

    Google Scholar 

  87. J.R. Rice (1968), “A path independent integral and the approximate analysis of strain concentration by notches and cracks”,J. Appl. Mech.,35, 379–386.

    Google Scholar 

  88. J.R. Rice (1969), “On the ductile enlargement of voids in triaxial stress fields”,J. Mech. Phys. Solids,17, 201–217.

    Article  Google Scholar 

  89. R.T. Rockafellar (1970),Convex Analysis, Princeton University Press.

  90. R. Rubinstein and S.N. Athiri (1983), “Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analysis”,Comp. Meth. Appl. Mech. Engng.,36, 277–290.

    Article  MATH  Google Scholar 

  91. K. Saanouni, J.L. Chaboche, and P.M. Lesne (1989), “Creep crack-growth prediction by a non-local damage formulation”, In J. Mazars and Z.P. Bazant, editors,Cracking and Damage, Strain Localization and Size Effect, pages 404–414, Amsterdam, Elsevier.

    Google Scholar 

  92. F. Sidoroff (1981). “Description of anisotropic damage application to clasticity”, In J. Hult and J. Lemaitre, editors,Proceedings of the IUTAM Symposium on Physical Non-Linearities in Structural Analysis—Senlis (France)—1980, Springer-Verlag.

  93. J.C. Simo (1985). “On the computational sigruticance of the intermediate configuration and hyperelastic stress relations in finite deformation clastoplasticity”,Mech. of Materials. 4, 439–451.

    Article  Google Scholar 

  94. J.C. Simo (1987), “On a fully three-dimensional finite-strain viscoelastic damage model: Formalation and computational aspects”,Comp. Meth. Appl. Mech. Engng.,60, 153–173.

    Article  MATH  Google Scholar 

  95. J.C. Simo (1992), “Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory”,Comp. Meth. Appl. Mech. Engng.,99, 61–112.

    Article  MathSciNet  MATH  Google Scholar 

  96. J.C. Simo and T.R.J. Hughes (1987), “General return mapping algorithms for rate-independent. plasticity”, In C.S. Desaiet al., editor,Constitutive Laws for Engineering Materials: Theory and Applications, pages 221 231, Elsevier.

  97. J.C. Simo and J.W. Ju (1987), “Strain- and stress-based continuum damage models. I. Formulation and II. Computational aspects”,Int. J. Solids Struct.,23, 821–869.

    Article  MATH  Google Scholar 

  98. J.C. Simo and C. Miche (1992), “Associative coupled thermoplasticity at finite strains: Formulation. numerical analysis and implementation”,Comp. Meth. Appl. Mech. Engng.,98, 41–104.

    Article  MATH  Google Scholar 

  99. J.C. Simo and R.L. Taylor (1985), “Consistent tangent operators for rate-independent clasto-plasticity”,Comp. Meth. Appl. Mech. Engng.,48, 101–118.

    Article  MATH  Google Scholar 

  100. E.A. de Souza Neto and D. Perić (1996), “A computational framework for a class of models for fully coupled clastoplastic damage at finite strains with reference to the linearization aspects”,Comp. Meth. Appl. Mech. Engng.,130, 179–193.

    Article  MATH  Google Scholar 

  101. E.A. de Souza Neto and D. Perić (1996). “On the computation of general isotropic tensor finctions of one tensor and their derivatives”, (submitted for publication).

  102. E.A. de Souza Neto, D. Perić, M. Dutko, and D.R.J. Owen (1996), “Design of simple low order finite elements for large strain analysis of nearly incompressible solids”,Int. J. Solids Struct.,33, 3277–3296.

    Article  MATH  Google Scholar 

  103. E.A. de Sonza Neto, D. Perié, and D.R.J. Owen (1992), “A computational model for ductile damage at finite strains”. In D.R.J. Owen, E. Oñate, and E. Hinton, editors.Proceedings of the Third International Conference on Computational Plasticity: Fundamentals and Applications-Barcelona, April 1992. pages 1425–1441. Swansca. Pineridge Press.

    Google Scholar 

  104. E.A. de Souza Neto, D. Perić, and D.R.J. Owen (1994), “A model for clasto-plastic damage at finite strains: Computational issues and applications”,Engng. Comp., 11(3), 257–281.

    Article  Google Scholar 

  105. E.A. de Souza Neto, D. Perić, and D.R.J. Owen (1994), “A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation computational aspectsW.J. Mech. Phys. Solids,42(10), 1533–1550.

    Article  MATH  Google Scholar 

  106. E.A. de Souza Neto, D. Perić, and D.R.J. Owen (1995), “Finite clasticity in spatial description: Linearization aspects with 3-D membrane applications”,Int. J. Num. Meth. Engng.,38, 3365–3381.

    Article  MATH  Google Scholar 

  107. P. Steinmann, C. Miche, and E. Stein (1994), “Comparison of different finite deformation inclastic damage models within multiplicative clastoplasticity for ductile metals”,Computational Mechanics,13, 458–474.

    Article  MATH  Google Scholar 

  108. H.J. Stern (1967), “Rubber: Natural and Synthetic, McLaren and Sons.

  109. W.H. Tai (1990), “Plastic damage and ductile fracture in mild metals”,Engng. Fract. Mech.,37(4), 853–880.

    Article  Google Scholar 

  110. L.R.G. Treloar (1967),The Physics of Rubber Elasticity, Oxford Univ. Press, 2nd edition.

  111. C. Truesdell (1969).Rational Thermodynamics, McGraw Hill, New York.

    Google Scholar 

  112. C. Truesdell and W. Noll (1965), “The non-linear field theories of mechames”, In S. Flügge, editor,Handbuch der Physik. Volume III/3, Springer-Verlag.

  113. V. Tvergaard (1981), “Influence of voids on shear band instabilities under plane strain conditions”,Int. J. Fracture,17, 380–407.

    Article  Google Scholar 

  114. V. Tvergaard (1982), “Material failure by void coalescence in localized shear bands”,Int. J. Solids Struct.,18, 659–672.

    Article  MATH  Google Scholar 

  115. V. Tvergaard (1982), “On localization in ductile materials containing spherical voids”,Int. J. Fracture,18, 237–252.

    Google Scholar 

  116. V. Tvergaard and A. Needleman (1984), “Analysis of the cup-cone fracture in a round tensile bar”,Acta Metall.,32, 157–169.

    Article  Google Scholar 

  117. S. Valliappan, V. Murti, and Z. Wohua (1990), “Finite element analysis of anisotropic damage mechanics problems”,Engng. Fracture Mech.,35(6), 1061–1071.

    Article  Google Scholar 

  118. G. Weber and L. Anand (1990), “Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids”Comp. Meth. Appl. Mech. Engng.,79, 173–202.

    Article  MATH  Google Scholar 

  119. Y.Y. Zhu, S. Coscotto, and A-M Habraken (1992), “A fully coupled clastoplastic damage theory based on energy equivalence”, In D.R.J. Owen, E. Oñate, and E. Hinton, editors.Proceedings of the Third International Conference on Computational Plasticity: Fundamentals and Applications-Barcelona, April 1992, pages 1455–1466. Swansea, Pineridge Press.

    Google Scholar 

  120. O.C. Zienkiewicz and R.L. Taylor (1989),The Finite Element Method-Vol. 1: Basic Formulation and Linear Problems, McGraw-Hill.

  121. O.C. Zienkiewicz and R.L. Taylor (1991).The Finite Element Method-Vol. 2: Solid and Fluid Mechanics, Dynamics and Non-Linearity, McGraw-Hill.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza Neto, E.A., Perić, D. & Owen, D.R.J. Continuum modelling and numerical simulation of material damage at finite strains. Arch Computat Methods Eng 5, 311–384 (1998). https://doi.org/10.1007/BF02905910

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02905910

Keywords

Navigation