Skip to main content
Log in

Microsatellite polymorphisms of Sichuan golden monkeys

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Previous study using protein electrophoresis shows no polymorphism in 44 nuclear loci of Sichuan golden monkey (Rhinopithecus roxellana), which limits our understandings of its population genetic patterns in the nuclear genome. In order to obtain sufficient information, we scanned 14 microsatellite loci in a sample of 32 individuals from its three major habitats (Minshan, Qinling and Shennongjia). A considerable amount of polymorphisms were detected. The average heterozygosities in the local populations were all above 0.5. The differentiations among local populations were significant. There was evidence of geneflow among subpopulations, but geneflow between Qinling and Shennongjia local populations was the weakest. Minshan and Qinling populations might have gone through recent bottlenecks. The estimation of the ratio of the effective population sizes among local populations was close to that from census sizes. Comparisons to available mitochondria data suggested thatR. roxellana’s social structures played an important role in shaping its population genetic patterns. Our study showed that the polymorphism level ofR. roxellana was no higher than other endangered species; therefore, measures should be taken to preserve genetic diversity of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quan, G. Q., Xie, J. H., Study of Golden Monkey, Shanghai: Shanghai Science Technology and Education Publishing House, 2002,

    Google Scholar 

  2. Groves, C. P., Primate Taxonomy, in Comparative Evolutionary Biology (ed. D’Araujo, E.), Washington: Smithsonian Institute Press, 2001,

    Google Scholar 

  3. Struhsaker, T. T., Leland, L., Colobines: infanticide by adult males, in Primate Societies (eds. Smuts, B. B., Cheney, D. L., Seyfarth, R. M.), Chicago: University of Chicago Press, 1987, 83–97.

    Google Scholar 

  4. Schaller, G. B., China’s golden treasure, Int.Wildl., 1985, 15:29–31.

    Google Scholar 

  5. Wang, Y. X., Jiang, X. L., Li, D. W., Classification of existing subspecies on golden snub-nosed monkey,Rhinopithecus roxellana (Colobinae, Primates), in Handbook and Absrtracts. XVth Congress of the International Primatological Society, Kuta, 1994, 277.

  6. Ma, S., Wang, Y., The recent distribution, status and conservation of primates in China, Acta Theriologica Sinica, 1988, 8(4): 250–260.

    Google Scholar 

  7. Ren, R. M., Su, Y. J., Yan, K. H. et al., Preliminary survey of the social organization ofRhinopithercus roxellana in shennongjia national natural reserve, Hubei, in The Natural History of the Doucs and Snub-nosed Monkeys (ed. Oxnard C. E., Jablonski N. G.), Singapore: World Scientific Publishing Co. Pte Ltd., 1998, 269–277

    Google Scholar 

  8. Li, B., Pan, R., Oxnard, C. E., Extinction of snub-nosed monkeys in china during the past 400 years, Int. J. Primatol., 2002, 23(6): 1227–1243.[[DOI]

    Article  Google Scholar 

  9. Jablonski, N. G., Dental agenesis as evidence of possible genetic isolation in the colobine monkeyRhinopithecus roxellana, Primates, 1992, 33(3): 371–376.

    Article  Google Scholar 

  10. Li, M., Liang, B., Feng, Z. J. et al., Molecular phylogenetic relationships among Sichuan snub-nosed monkeys (Rhinopithecus roxellanae) Inferred from mitochondrial cytochrome-b gene sequences, Primates, 2001, 42(2): 153–160.

    Article  Google Scholar 

  11. Li, H., Meng, S. J., Men, Z. M. et al., Genetic diversity and population history of golden monkeys (Rhinopithecus roxellana), Genetics, 2003, 164(1): 269–275.

    PubMed  Google Scholar 

  12. Sambrook, X., Russell, D., Molecular Cloning, New York: Cold Spring Harbor Laboratory Press, 2001,

    Google Scholar 

  13. Morin, P. A., Kanthaswamy, S., Smith, D. G., Simple sequence repeat (ssr) polymorphisms for colony management and population genetics in rhesus macaques (macaca mulatta), Am. J. Primatol., 1997, 42(3): 199–213.[DOI]

    Article  PubMed  CAS  Google Scholar 

  14. Smith, D. G., Kanthaswamy, S., Viray, J. et al., Additional highly polymorphic microsatellite (ssr) loci for estimating kinship in rhesus macaques (Macaca mulatta), Am. J. Primatol., 2000, 50(1): 1–7.[DOI]

    Article  PubMed  CAS  Google Scholar 

  15. Uno, H., Alsum, P., Zimbric, M. L. et al., Colon cancer in aged captive rhesus monkeys (Macaca mulatta), Am. J. Primatol., 1998, 44(1): 19–27.[DOI]

    Article  PubMed  CAS  Google Scholar 

  16. Pritchard, J. K., Feldman, M. W., Statistics for microsatellite variation based on coalescence, Theor. Popul. Biol., 1996, 50(3): 325–344.[DOI]

    Article  PubMed  CAS  Google Scholar 

  17. Cornuet, J. M., Lüikart, G., Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics, 1996, 144(4): 2001–2014.

    PubMed  CAS  Google Scholar 

  18. Kalinowski, S. T., How many alleles per locus should be used to estimate genetic distances? Heredity, 2002, 88(1): 62–65.[DOI]

    Article  PubMed  CAS  Google Scholar 

  19. Dieringer, D., Schlötterer, C., Microsatellite analyser (msa): A platform independent analysis tool for large microsatellite data sets, Molecular Ecology Notes, 2003, 3(1): 167–169.[DOI]

    Article  CAS  Google Scholar 

  20. Weir, B., Cockerham, C. C., Estimating f-statistics for the analysis of population structure, Evolution, 1984, 38: 1358–1370.

    Article  Google Scholar 

  21. Guo, S. W., Thompson, E. A., Performing the exact test of Hardy-Weinberg proportion for multiple alleles, Biometrics, 1992, 48(2): 361–372.

    Article  PubMed  CAS  Google Scholar 

  22. Rousset, F., Raymond, M., Testing heterozygote excess and deficiency, Genetics, 1995, 140(4): 1413–1419.

    PubMed  CAS  Google Scholar 

  23. Raymond, M., Rousset, F., GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism, J. Heredity, 1995, 86:248–249.

    Google Scholar 

  24. Schneider, S., Roessli, D., Excoffier, L., Arlequin: A software for population genetics data analysis, Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva, 2000.

  25. Xu, H.Y., Fu, Y. X., Estimating effective population size or mutation rate with microsatellites, Genetics, 2004, 166: 555 -563.[DOI]

    Article  PubMed  CAS  Google Scholar 

  26. Bowcock, A. M., Ruiz-Linares, A., Tomfohrde, J. et al., High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 1994, 368(6470): 455–457.[DOI]

    Article  PubMed  CAS  Google Scholar 

  27. Cavalli-Sforza, L. L., Edwards, A. W. F., Phylogenetic analysis: Models and estimation procedures, Evolution, 1967, 21: 550–570.

    Article  Google Scholar 

  28. Saitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, 4(4): 406–425.

    PubMed  CAS  Google Scholar 

  29. Felsenstein, J., PHYLIP—Phylogeny inference package (Version 3.2), Cladistics, 2002, 5: 164–166.

    Google Scholar 

  30. Hartl, D. L., Clark, A. G., Principles of Population Genetics, 3rd ed., Sunerland: Sinauer Associates Inc., 1997,

    Google Scholar 

  31. Moran, P.A., Wandering distributions and the electrophoretic profile, Theor. Popul. Biol., 1975, 8(3): 318–330.

    Article  PubMed  CAS  Google Scholar 

  32. Shriver, M. D., Jin, L., Chakraborty, R. et al., VNTR allele frequency distributions under the stepwise mutation model: A computer simulation approach, Genetics, 1993, 134(3): 983–993.

    PubMed  CAS  Google Scholar 

  33. Ota, T., Kimura, M., A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population, Genet. Res., 1973, 22(2): 201–204.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, D. X., Hewitt, G. M., Nuclear DNA analyses in genetic studies of populations: Practice, problems and prospects, Mol. Ecol., 2003, 12(3): 563–584.[DOI]

    Article  PubMed  CAS  Google Scholar 

  35. Bennett, P., Demystified microsatellites, Mol. Pathol., 2000, 53(4): 177–183.[DOI]

    Article  PubMed  CAS  Google Scholar 

  36. Lu, Z., Johnson, W. E., Menotti-Raymond, M. et al., Patterns of genetic diversity in remaining Giant Panda populations, Conserv. Biol., 2001, 15(6): 1596–1607.[DOI]

    Article  Google Scholar 

  37. Linda, H., Christopher, W. W., Eli Knispel, R. et al., Differentiation and levels of genetic variation in northern European lynx (Lynx lynx) populations revealed by microsatellites and mitochondrial DNA analysis, Conserv. Genet., 2002, 3(2): 97–111.[DOI]

    Article  Google Scholar 

  38. Zhang, Y. W., Morin, P. A., Ryder, O. A. et al., A set of human triand tetra-nucleotide microsatellite loci useful for population analyses in gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus), Conserv. Genet., 2001, 2(4): 391–395.[DOI]

    Article  Google Scholar 

  39. Queney, G., Ferrand, N., Weiss, S. et al., Stationary distributions of microsatellite loci between divergent population groups of the European rabbit (Oryctolagus cuniculus), Mol. Biol. Evol., 2001, 18(12): 2169–2178.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Zhang.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Pan, D., Li, Y., Hu, H. et al. Microsatellite polymorphisms of Sichuan golden monkeys. Chin.Sci.Bull. 50, 2850–2855 (2005). https://doi.org/10.1007/BF02899655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899655

Keywords

Navigation