Skip to main content
Log in

Calcium channels in cellular membranes

  • Review
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Conclusion

The analysis presented of modern data about the functioning of calcium channels in cellular membranes shows that we are dealing with an extremely complex and dynamic system for generation of intracellular signals, one which participates in the coupling of all aspects of cellular activity with the primary processes in the plasmalemma. The diversity of calcium channels produces a large variety of such signals, thus reflecting the variability of external influences on the cell. At the same time, because of the unique physicochemical properties of calcium ions, which enable their specific binding to a large class of protein molecules, the calcium signals become the most universal intracellular messengers suitable for triggering other more specific physicochemical and biochemical cellular reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike N., Kostyuk, P.G., Osipchuk, Y.V. (1989). Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones J. Physiol. (London) 42:181–195

    Google Scholar 

  • Akaike N., Tsuda, Y., Oyama, Y. (1988). Separation of current-and voltage-dependent inactivation of calcium current in frog sensory neuron. Neurosci. Lett. 84:46–50

    Article  PubMed  CAS  Google Scholar 

  • Akopyan, A.R., Chemeris, N.K., Iljin, V.I. (1985). Neurotransmitter-induced modulation of neuronal Ca current is not mediated by intracellular Ca or cAMP. Brain Res. 326:145–148

    Article  PubMed  CAS  Google Scholar 

  • Akopyan, A.R., Chemeris, N.K., Iljin, V.I., Ilyasov, F.E., Selishcheva, A.A. (1986). The effects of phospholipase C on the voltage-gated Ca current inLymnaea stagnalis mollusc neurons. FEBS Lett. 205:261–264

    Article  CAS  Google Scholar 

  • Alkon, D.L. (1985). Changes of membrane currents and calcium-dependent phosphorylation during associative learning. Neural Mechanisms of Conditioning. D.L. Alkon, C.D. Woody, (ed). Plenum, New York, pp 3–18

    Google Scholar 

  • Almers, W., McCleskey, E.W., Palade, P.T. (1986). The mechanism of ion selectivity in calcium channels of skeletal muscle membrane. Fortschr. Zool. 33:61–73

    CAS  Google Scholar 

  • Anderson, A.J., Harvey, A.L. (1987). ω-Conotoxin does not block the verapamil-sensitive calcium channels at mouse motor nerve terminals. Neurosci. Lett. 82:177–180

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, D., Eckert, R. (1985). Phosphorylating agents prevent washout of unitary calcium currents in excised membrane patches. J. Gen. Physiol. 86:25a

    Google Scholar 

  • Armstrong, D., Kalman, D. (1988). The role of protein phosphorylation in the response of dihydropyridinesensitive calcium channels to membrane depolarization in mammalian pituitary tumor cells. Calcium and Ion Channel Modulation. Proceedings, Symposium Honoring R. Eckert, Feb. 26–March 1, 1987, Los Angeles, Ca. A.D. Grinnell, D. Armstrong, M.B. Jackson (eds). Plenum, New York, pp 215–227

    Google Scholar 

  • Arreola, J., Calvo, J., Garcia, M.C., Sanchez, J.A. (1987). Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. J. Physiol (London) 393:307–330

    CAS  Google Scholar 

  • Ascher, P., Nowak, L. (1987). Electrophysiological studies of NMDA receptors. TINS 10:284–287

    CAS  Google Scholar 

  • Ascher, P., Nowak, L. (1988). The role of divalent cations in theN-methyl-d-aspartate responses of mouse central neurones in culture. J. Physiol. (London) 399:247–266

    CAS  Google Scholar 

  • Barhanin, J., Coppola, T., Schmid, A., Borsotto, M., Lazdunski, M. (1987). The calcium channels antagonists receptor from brain skeletal muscle. Reconstruction after purification and subunit characterization. Eur. J. Biochem. 164:525–531

    Article  PubMed  CAS  Google Scholar 

  • Barhanin, J., Schmid, A., Lazdunski, M. (1988). Properties of structure and interaction of the receptor for ω-conotoxin, a polypeptide active on Ca2+ channels. Biochem. Biophys. Res. Commun. 150:1051–1062

    Article  PubMed  CAS  Google Scholar 

  • Bean, B.P. (1985). Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity and pharmacology. J. Gen. Physiol. 86:1–30

    Article  PubMed  CAS  Google Scholar 

  • Bechem, M., Pott, L. (1985). Removal of Ca current inactivation in dialysed guinea-pig atrial cardioballs by Ca chelators. Pfluegers Arch. 404:10–20

    Article  CAS  Google Scholar 

  • Belan, P.V., Osipenko, O.N., Tepikin, A.V. (1989). Calcium release from intracellular stores of the neuronal soma of the mollusc induced by inositol triphosphate and nonhydrolyzed GTP analogue. Neurophysiology (Kiev) 21:707–710

    CAS  Google Scholar 

  • Belardetti, F., Schacher, S., Siegelbaum, S.A. (1986). Action potentials, macroscopic and single channel currents recorded from growth cones ofAplysia neurones in culture. J. Physiol. (London) 374:289–313

    CAS  Google Scholar 

  • Belles, B., Malecot, C.O., Hescheler, J., Trautwein, W. (1988). “Run-down” of the Ca current during long whole-cell recordings in guinea pig heart cells: Role of phosphorylation and intracellular calcium. Pfluegers Arch. 411:353–360

    Article  CAS  Google Scholar 

  • Benham, C.D., Tsien, R.W. (1987). A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328:275–278

    Article  PubMed  CAS  Google Scholar 

  • Bernal, M.J., Fernandez, J.R., Alvarez-Leefmans, F.J. (1987). Trifluoperazine blocks Ca2+ inward currents inHelix neurons in a reversible and dose dependent manner. Biophys. J. 51 (part 2):33

    Google Scholar 

  • Blaustein, M.P. (1988). Calcium transport and buffering in neurons. TINS 11:438–443

    PubMed  CAS  Google Scholar 

  • Bodewei, R., Hering, S., Schubert, B., Wollenberger, A. (1985). Sodium and calcium currents in neuroblastoma glioma hybrid cells before and after morphological differentiation by dibutyryl cyclic AMP. Gen. Physiol. Biophys. 4:113–127

    PubMed  CAS  Google Scholar 

  • Boll, W., Lux, H.D. (1985). Action of organic antagonists on neuronal calcium currents. Neurosci. Lett. 56: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Bolsover, S.R., Spector, I. (1986). Measurements of calcium transients in the soma, neurite, and growth cone of single cultured neurons. J. Neurosci. 6:1934–1940

    PubMed  CAS  Google Scholar 

  • Bonvallet, R. (1987). A low threshold calcium current recorded at physiological Ca concentrations in single frog atrial cells. Pfluegers Arch. 408:540–542

    Article  CAS  Google Scholar 

  • Borsotto, M., Barhanin, J., Fosset, M., Lazdunski, M. (1985). The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent Ca2+ channel. J. Biol. Chem. 260:14255–14263

    PubMed  CAS  Google Scholar 

  • Bossu, J.-L., Feltz, A. (1986). Inactivation of the low-threshold transient calcium current in rat sensory neurones: Evidence for a dual process. J. Physiol. (London) 376:341–357

    CAS  Google Scholar 

  • Bossu, J.-L., Feltz, A., Thomann, J.M. (1985). Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pfluegers Arch. 403:360–368

    Article  CAS  Google Scholar 

  • Bozem, M., Nenquin, M., Henquin, J.-C. (1987). The ionic, electrical, and secretory effects of protein kinase C activation in mouse pancreatic β-cells: Studies with a phorbol ester. Endocrinology 121:1025–1033

    PubMed  CAS  Google Scholar 

  • Brezina, V., Eckert, R., Erxleben, C. (1987). Suppression of calcium current by an endogenous neuropeptide in neurones ofAplysia californica. J. Physiol. (London) 388:565–595

    CAS  Google Scholar 

  • Brown, A.M., Kunze, D.L., Yatani, A. (1986). Dual effects of dihydropyridines on whole cell and unitary calcium currents in single ventricular cells of guineapig. J. Physiol. (London) 379:495–514

    CAS  Google Scholar 

  • Byerly, L., Hagiwara, S. (1982). Calcium currents in internally perfused nerve cell bodies of Limnea stagnalis. J. Physiol. (London) 322:503–528

    CAS  Google Scholar 

  • Byerly, L., Hagiwara, S. (1988). Calcium channel diversity. Calcium and Ion Channel Modulation. Proceedings, Symposium Honoring R. Eckert. Feb. 26-March 1, 1987. Los Angeles, Ca. A.D. Grinnell, D. Armstrong, M.B. Jackson (eds). New York, Plenum, pp 3–18

    Google Scholar 

  • Byerly, L., Yazejian, B. (1986). Intracellular factors for the maintenance of calcium currents in perfused neurones from the snail,Lymnaea stagnalis. J. Physiol. (London) 370:631–650

    CAS  Google Scholar 

  • Byerly, L., Chase, P.B., Stimers, J.R. (1984). Calcium current activation kinetics in neurones of the snailLymnaea stagnalis. J. Physiol. (London) 348:187–207

    CAS  Google Scholar 

  • Campbell, K.P., Leung, A.T., Sharp, A.H. (1988). The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. TINS 11:425–430

    PubMed  CAS  Google Scholar 

  • Carbone, E., Lux, H.D. (1984). A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–503

    Article  PubMed  CAS  Google Scholar 

  • Carbone, E., Lux, H.D. (1987a). Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. J. Physiol. (London) 386:547–570

    CAS  Google Scholar 

  • Carbone, E., Lux, H.D. (1987b). Single low-voltage-activated calcium channels in chick and rat sensory neurones. J. Physiol. (London) 386:571–601

    CAS  Google Scholar 

  • Cavalie, A., Flockerzi, V., Hofmann, F., Pelzer, D., Trautwein, W. (1987). Two types of calcium channels from rabbit fast skeletal muscle transverse tubules in lipid bilayers: Differences in conductance, gating behaviour and chemical modulation. J. Physiol. (London) 390:82P

    Google Scholar 

  • Chad, J.E., Eckert, R. (1985). Ca current inactivation is slowed in dialysed snail neurones by the substitution of ATP-g-S for internal ATP. J. Gen. Physiol. 86:27a

    Google Scholar 

  • Chad, J.E., Eckert, R. (1986). An enzymatic mechanism for calcium current inactivation in dialysedHelix neurones. J. Physiol. (London) 378:31–51

    CAS  Google Scholar 

  • Chen, C., Corbley, M.J., Roberts, T.M., Hess, P. (1988). Voltage-sensitive calcium channels in normal and transformed 3 T3 fibroblasts. Science 239:1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W. (1988). Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage. TINS 11:465–469

    PubMed  CAS  Google Scholar 

  • Cognard, C., Lazdunski, M., Romey, G. (1986). Different types of Ca2+ channels in mammalian skeletal muscle cells in culture. Proc. Natl. Acad. Sci. U.S.A. 83: 517–521

    Article  PubMed  CAS  Google Scholar 

  • Cohen, C.J., McCarthy, R.T. (1987). Nimodipine block of calcium channels in rat anterior pituitary cells. J. Physiol. (London) 387:195–225

    CAS  Google Scholar 

  • Cohen, C.J., McCarthy, R.T., Barrett, P.Q., Rasmussen, H. (1988). Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc. Natl. Acad. Sci. U.S.A. 85:2412–2416

    Article  PubMed  CAS  Google Scholar 

  • Cota, G. (1986). Calcium channel currents in pars intermedia cells of the rat pituitary gland. Kinetic properties and washout during intracellular dialysis. J. Gen. Physiol. 88:83–105

    Article  PubMed  CAS  Google Scholar 

  • Cota, G., Stefani, E. (1986). A fast-activated inward calcium current in twitch muscle fibres of the frog (Rana montezume). J. Physiol. (London) 370:151–163

    CAS  Google Scholar 

  • Cruz, L.J., Johnson, D.S., Olivera, B.M. (1987). Characterization of the ω-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types. Biochemistry 26:820–824

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B.M., Catterall, W.A. (1984). Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23:2113–2118

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B.M., Catterall, W.A. (1985). Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 82:2528–2532

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B.A., Prosser, C.L. (1977). Calcium and cat intestinal smooth muscle. Excitation-Contraction Coupling in Smooth Muscle. R. Casteels, T. Gottfraid, J.C. Ruegg (eds). Elsevier, Amsterdam, pp 123–129

    Google Scholar 

  • Davies, N.W., Lux, H.D., Morad, M. (1988). Site and mechanism of activation of proton-induced sodium current in chick dorsal root ganglion neurones. J. Physiol. (London) 400:159–187

    CAS  Google Scholar 

  • Deisz, R.A., Lux, H.D. (1985). γ-Aminobutyric acid-induced depression of calcium currents of chick sensory neurons. Neurosci. Lett. 56:205–210

    Article  PubMed  CAS  Google Scholar 

  • Deitmer, J.W. (1986). Voltage dependence of two inward currents carried by calcium and barium in the ciliateStylonychia mytilus. J. Physiol. (London) 380:551–574

    CAS  Google Scholar 

  • Deitmer, J.W., Ivens, I., Pernberg, J. (1986). Changes in voltage-dependent calcium currents during the cell cycle of the ciliate Stylonychia. Exp. Cell. Res. 162:549–554

    Article  PubMed  CAS  Google Scholar 

  • DeRiemer, S.A., Strong, J.A., Albert, K.A., Greengard, P., Kaczmarek, L.K. (1985). Enhancement of calcium current inAplysia neurones by phorbol ester and protein kinase C. Nature 313:313–316

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, A.C., Scott, R.H. (1987). Calcium channel currents and their inhibition by (-)-backlofen in rat sensory neurones: modulation by guanine nucleotides. (London) J. Physiol. 386:1–17

    CAS  PubMed  Google Scholar 

  • Dolphin, A.C., Forda, S.R., Scott, R.H. (1986). Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J. Physiol. (London) 373:47–61

    CAS  Google Scholar 

  • Dolphin, A.C., Wootton, J.F., Scott, R.H., Trentham, D.R. (1988). Photoactivation of intracellular guanosine triphosphate analogues reduces the amplitude and slows the kinetics of voltage-activated calcium channel currents in sensory neurones. Pfluegers Arch. 411:628–636

    Article  CAS  Google Scholar 

  • Doroshenko, P.A., Kostyuk, P.G. (1987). Enhancement of calcium current in the somatic membrane of snail nerve cells by phorbol ester. Biol. Memb. (Moscow) 4:1160–1163

    CAS  Google Scholar 

  • Doroshenko, P.A., Kostyuk, P.G., Martynyuk, A.E. (1982). Intracellular metabolism of adenosine 3′,5′-cyclic monophosphate and calcium inward current in perfused neurones ofHelix pomatia. Neuroscience 7:2125–2134

    Article  PubMed  CAS  Google Scholar 

  • Doroshenko, P.A., Kostyuk, P.G., Martynyuk, A.E. (1984a). Inactivation of calcium current in the somatic membrane of snail neurons. Gen. Physiol. Biophys. 3:1–17

    PubMed  CAS  Google Scholar 

  • Doroshenko, P.A., Kostyuk, P.G., Martynyuk, A.E., Kursky, M.D., Vorobetz, Z.D. (1984b). Intracellular protein kinase and calcium inward currents in perfused neurones of the snailHelix pomatia. Neuroscience 11:263–267

    Article  PubMed  CAS  Google Scholar 

  • Doroshenko, P.A., Kostyuk, P.G., Luk’yanetz, E.A. (1988a). Interaction of calmodulin antagonists with calcium channels. Biol. Membr. (Moscow) 5:688–697

    CAS  Google Scholar 

  • Doroshenko, P.A., Kostyuk, P.G., Luk’yanetz, E.A. (1988b). The action of forskolin on the calcium current in mollusc nerve cells. Neurophysiology (Kiev) 20:134–136

    CAS  Google Scholar 

  • Dunlap, K., Fishbach, G.D. (1981). Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J. Physiol. (London) 317:519–535

    CAS  Google Scholar 

  • Dunlap, K., Rane, S.G., Holz, G.G. (1988). Functional implications of calcium channel modulation in embryonic dorsal root ganglion neurons. Calcium and Ion Channel Modulation. Proceedings, Symposium Honoring R. Eckert, Feb. 26–March 1, 1987, Los Angeles, Ca. A.D. Grinnell, D. Armstrong, M.B. Jackson (eds). Plenum, New York pp 255–262

    Google Scholar 

  • Dupon, J.-L., Bossu, J.-L., Feltz, A. (1986). Effect of internal calcium concentration on calcium currents in rat sensory neurones. Pfluegers Arch. 406:433–435

    Article  Google Scholar 

  • Eckert, R., Tillotson, D. (1981). Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones ofAplysia californica. J. Physiol. (London) 314:265–280

    CAS  Google Scholar 

  • Eckert, R., Chad, J.E., Kalman, D. (1986). Enzymatic regulation of calcium current in dialyzed and intact molluscan neurons. J. Physiol. (Paris) 81:318–324

    CAS  Google Scholar 

  • Ewald, D.A., Walker, M.W., Perney, T.M., Matthies, H.J.G., Miller, R.J. (1988). Neurotransmitter modulation of calcium currents in rat sensory neurons. Calcium and Ion Channel Modulation. Proceedings, Symposium Honoring R. Eckert, Feb. 26–March 1, 1987, Los Angeles, Ca. A.D. Grinnell, D. Armstrong, M.B. Jackson (eds). Plenum, New York, pp 263–273

    Google Scholar 

  • Fabiato, A. (1985). Time and calcium dependence of activation and activation of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85:247–289

    Article  PubMed  CAS  Google Scholar 

  • Farley, J., Auerbach, S. (1986). Protein kinase C activation induces conductance changes inHermissenda photoreceptors like those seen in associative learning. Nature 319:220–223

    Article  PubMed  CAS  Google Scholar 

  • Fedulova, S.A., Kostyuk, P.G., Veselovsky, N.S. (1981). Calcium channels in the somatic membrane of the rat dorsal root ganglion neurons, effect of cAMP. Brain Res 214:210–214

    Article  PubMed  CAS  Google Scholar 

  • Fedulova, S.A., Kostyuk, P.G., Veselovsky, N.S. (1985). Two types of calcium channels in the somatic membrane of newborn rat dorsal root ganglion neurons. J. Physiol. (London) 359:431–446

    CAS  Google Scholar 

  • Fedulova, S.A., Kostyuk, P.G., Veselovsky, N.S. (1986). Changes in ionic mechanisms of electrical excitability of the somatic membrane of rat’s dorsal root ganglion neurons during ontogenesis. Correlation between inward currents densities. Neurophysiology (Kiev) 18:820–827

    CAS  Google Scholar 

  • Fill, M., Coronado, R. (1988). Ryanodine receptor channel of sarcoplasmic reticulum. TINS 11:453–457

    PubMed  CAS  Google Scholar 

  • Findlay, I., Dunne, M.J. (1985). Voltage-activated Ca2+ currents in insulin-secreting cells. FEBS Lett. 189:281–285

    Article  PubMed  CAS  Google Scholar 

  • Fink, L.A., Connor, J.A., Kaczmarek, L.K. (1988). Inositol triphosphate releases intracellularly stored calcium and modulates ion channels in molluscan neurons. J. Neurosci. 8:2544–2555

    PubMed  CAS  Google Scholar 

  • Fischmeister, R., Hartzell, H.C. (1986). Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. (London) 376:183–202

    CAS  Google Scholar 

  • Freedman, S.B., Miller, R.J. (1984). Effects of nitrendipine on voltage sensitive calcium channels in brain and neuronal cultured cells. Nitrendipine A. Scriabines, S. Vanov, K. Deck (eds). Urban & Schwarzenberg, Baltimore, pp 79–90

    Google Scholar 

  • Forscher, P., Oxford, G.S., Schultz, D. (1986). NOradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling. J. Physiol. (London) 379:131–144

    CAS  Google Scholar 

  • Fox, A.P., Nowycky, M.C., Tsien, R.W. (1987a). Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J. Physiol. (London) 394:149–172

    CAS  Google Scholar 

  • Fox, A.P., Nowycky, M.C., Tsien, R.W. (1987b). Single-channel recordings of three types of calcium channels in chick sensory neurones. J. Physiol. (London) 394:173–200

    CAS  Google Scholar 

  • Froehner, S.C. (1988). New insights into the molecular structure of the dihydropyridine-sensitive calcium channel. TINS 11:90–92

    PubMed  CAS  Google Scholar 

  • Galizzi, J.-P., Qar, J., Fosset, M., Van Rentergham, C., Lazdunski, M. (1987). Regulation of calcium channels in aortic muscle cells by protein kinase C activators (diacylglycerol and phorbol esters) and by peptides (vasopressin and bombesin) that stimulate phosphoinositide breakdown. J. Biol. Chem. 262:6947–6950

    PubMed  CAS  Google Scholar 

  • Ganitkevich, V.Y., Shuba, M.F., Smirnov, S.V. (1987). Calcium-dependent inactivation of potential-dependent calcium inward current in an isolated guinea-pig smooth muscle cell. J. Physiol. (London) 392:431–449

    Google Scholar 

  • Gerschenfeld, H.M., Hammond, C., Paupardin-Tritsch, D. (1986). Modulation of the calcium current of molluscan neurones by neurotransmitters. J. Exp. Biol. 124:73–91

    CAS  Google Scholar 

  • Gray, R., Johnston, D. (1987). Noradrenaline and β-adrenoreceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature 327:620–622

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, D.A., Carpenter, C.L., Messing, R.O. (1987). Lectin-induced enhancement of voltage-dependent calcium flux and calcium channel antagonist binding. J. Neurochem. 48:888–894

    Article  PubMed  CAS  Google Scholar 

  • Gross, R.A., Macdonald, R.L. (1987). Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cells culture. Proc. Natl. Acad. Sci. U.S.A.: 84:5469–5473

    Article  PubMed  CAS  Google Scholar 

  • Gross, R.A., Macdonald, R.L. (1988). Reduction of the same calcium current component by A and C kinase: Differential pertussis toxin sensitivity. Neurosci. Lett. 88:50–56

    Article  PubMed  CAS  Google Scholar 

  • Gukovskaya, A.S., Zinchenko, V.P., Khodorov, B.I. (1987). Properties of the mitogene-activated system of Ca2+ transport in lymphocyte plasma membrane. Biol. Membr. (Moscow) 4:923–931

    CAS  Google Scholar 

  • Haga, N., Forte, M., Ramanathan, R., Hennessey, T., Takahashi, M., Kung, C. (1984). Characterization and purification of a soluble protein controlling Ca-channel activity inParamecium. Cell 39:71–78

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara, N., Irisawa, H., Kameyama, M. (1988). Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J. Physiol. (London) 395:233–253

    CAS  Google Scholar 

  • Hagiwara, S., Fukuda, J., Eaton, D.C. (1974). Membrane currents carried by Ca, Sr and Ba in barnacle muscle fiber during voltage clamp. J. Gen. Physiol. 63:564:578

    Google Scholar 

  • Hammond, C., Paupardin-Tritsch, D., Nairn, A., Greengard, P., Gerschenfeld, H.M. (1987). Cholecystokinin induces a decrease in Ca2+ current in snail neurons that appears to be mediated by protein kinase C. Nature 325:809–811

    Article  PubMed  CAS  Google Scholar 

  • Harris, K.M., Kongsamut, S., Miller, R.J. (1986). Protein kinase C mediated regulation of calcium channels in PC-12 pheochromocytoma cells. Biochem. Biophys. Res. Commun. 134:1298–1305

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick, R.M., Hammond, C., Paupardin-Tritsch, D., Homberger, V., Rouot, B., Bockaert, J., Gerschenfeld, H.M. (1988). An α40 subunit of a GTP-binding protein immunologically related to Go mediates a dopamine-induced decrease of Ca2+ current in snail neurons. Neuron 1:27–32

    Article  PubMed  CAS  Google Scholar 

  • Henquin, J.-C., Meissner, H.P. (1983). Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic β cells. Biochem. Biophys. Res. Commun. 112:614–620

    Article  PubMed  CAS  Google Scholar 

  • Henquin, J.-C., Meissner, H.P. (1984). Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic β-cells. Experientia 40:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Henquin, J.-C., Bozem, M., Schmeer, W., Nenquin, M. (1987). Distinct mechanisn for two amplification systems of insulin release. Biochem. J. 246:393–399

    PubMed  CAS  Google Scholar 

  • Hering, S., Bodewei, R., Schubert, B., Rohde, K., Wollenberger, A. (1985). A kinetic analysis of the inward calcium current in 108 C C15 neuroblastoma glioma hybrid cells. Gen. Physiol. Biophys. 4:129–141

    PubMed  CAS  Google Scholar 

  • Hescheler, J., Kameyama, M., Trautwein, W. (1986). On the mechanism of muscarinic inhibition of the cardiac Ca current. Pfluegers Arch. 407:182–189

    Article  CAS  Google Scholar 

  • Hescheler, J., Kameyama, M., Trautwein, W., Mieskes, G., Solling, H.-D. (1987a). Regulation of the cardiac calcium channel by protein phosphatases. Eur. J. Biochem. 165:261–266

    Article  PubMed  CAS  Google Scholar 

  • Hescheler, J., Rosenthal, W., Trautwein, W., Schultz, G. (1987b). The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325:445–447

    Article  PubMed  CAS  Google Scholar 

  • Hescheler, J., Tang, M., Jastorff, B., Trautwein, W. (1987c). On the mechanism of histamine induced enhancement of the cardiac Ca2+ current. Pfluegers Arch. 410:23–29

    Article  CAS  Google Scholar 

  • Hess, P., Lansman, J.B., Tsien, R.W. (1986). Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88:293–319

    Article  PubMed  CAS  Google Scholar 

  • Hirano, T., Takahashi, K. (1983). Development of calcium channels in the membrane of the cleavage-arrested embryo of ascidians. The Physiology of Excitable Cells. Alan R. Liss, New York, pp 279–289

    Google Scholar 

  • Hiriart, M., Matteson, D.R. (1988). Na-channels and two types of Ca-channels in rat pancreatic B cells identified with the reverse hemolytic plaque assay. J. Gen. Physiol. 91:617–639

    Article  PubMed  CAS  Google Scholar 

  • Hirning, L.D., Fox, A.P., McCleskey, E.W., Olivera, B.M., Thayer, S.A., Miller, R.J., Tsien, R.W. (1988). Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–61

    Article  PubMed  CAS  Google Scholar 

  • Hockberger, P., Connor, J.A. (1984). Alterations of calcium conductances and outward current by cyclic adenosine monophosphate (cAMP) in neurons of Limax maximus. Cell. Mol. Neurobiol. 4:319–338

    Article  PubMed  CAS  Google Scholar 

  • Hosey, M.M., Borsotto, M., Lazdunski, M. (1986). Phosphorylation and dephosphorylation of dihydropyridine-sensitive voltage-dependent Ca2+ channel in skeletel muscle membranes by cAMP- and Ca2+-dependent processes. Proc. Natl. Acad. Sci. U.S.A. 83:3733–3737

    Article  PubMed  CAS  Google Scholar 

  • Hymel, L., Schindler, H., Inui, M., Fleischer, S. (1988). Reconstitution of purified cardiac muscle calcium release channel (ryanodine receptor) in planar bilayers. Biochem. Biophys. Res. Commun. 152:308–314

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto, Y., Mitsuiye, T., Ishizuka, S. (1986). Reduction of the voltage-dependent calcium current inAplysia neurons by pentobarbital. Cell. Mol. Neurobiol. 6:293–305

    Article  PubMed  CAS  Google Scholar 

  • Imagawa, T., Leung, A.T., Campbell, K.P. (1987a). Phosphorylation of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel by an intrinsic protein kinase in isolated triads from rabbit skeletal muscle. J. Biol. Chem. 262:8333–8339

    PubMed  CAS  Google Scholar 

  • Imagawa, T., Smith, J.S., Coronado, R., Campbell, K.P. (1987b). Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J. Biol. Chem. 262:16636–16643

    PubMed  CAS  Google Scholar 

  • Kameyama, A., Nakayama, T. (1988). Calcium efflux through cardiac calcium channels reconstituted into liposomes-flux measurement with fura-2. Biochem. Biophys. Res. Commun. 154:1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Kameyama, M., Hofmann, F., Trautwein, W. (1985) On the mechanism of β-adrenergic regulation of the Ca channel in the guinea-pig heart. Pfluegers Arch. 405:285–293

    Article  CAS  Google Scholar 

  • Kameyama, M., Hescheler, J., Hofmann, F., Trautwein, W. (1986a). Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Fluegers Arch. 407:123–128

    Article  CAS  Google Scholar 

  • Kameyama, M., Hescheler, J., Mieskes, G., Trautwein, W. (1986b). The protein-specific phosphatase I antagonizes the β-adrenergic increase of the cardiac Ca current. Pfluegers Arch. 407:461–463

    Article  CAS  Google Scholar 

  • Kameyama, M., Kameyama, A., Nakayama, T., Kaibara, M. (1988). Tissue extract recovers cardiac calcium channels from “run-down.” Pfluegers Arch. 412:328–330

    Article  CAS  Google Scholar 

  • Kaneko, A., Pinto, L.H., Tachibana, M. (1989). Transient calcium current of retinal bipolar cells of the mouse. J. Physiol. (London) 410:613–629

    CAS  Google Scholar 

  • Kaneko, S., Nomura, Y. (1987). Cyclic AMP facilitates slow-inactivating Ca2+ channel currents expressed byXenopus oocyte after injection of rat brain mRNA. Neurosci. Lett. 83:123–127

    Article  PubMed  CAS  Google Scholar 

  • Kass, R.S., Sanguinetti, M.C. (1984). Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage- and calcium-mediated mechanisms. J. Gen. Physiol. 84:705–726

    Article  PubMed  CAS  Google Scholar 

  • Kay, A.R., Wong, R.K.S. (1987). Calcium current activation kinetics in isolated pyramidal neurones of the CAl region of the mature guinea-pig hippocampus. J. Physiol. (London) 392:603–616

    CAS  Google Scholar 

  • Kley, N., Loeffler, J.-P., Pittius, C.W., Hollt, V. (1987). Involvement of ion channels in the induction of proenkephalin A gene expression by nicotine and cAMP in bovine chromaffin cells. J. Biol. Chem. 262:4083–4089

    PubMed  CAS  Google Scholar 

  • Kongsamut, S., Freedman, S.B., Miller, R.J. (1985). Dihydropyridine sensitive calcium channels in a smooth muscle cell line. Biochem. Biophys. Res. Commun. 127:71–79

    Article  PubMed  CAS  Google Scholar 

  • Konnerth, A., Lux, H.D., Morad, M. (1987). Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J. Physiol. (London) 386:603–633

    CAS  Google Scholar 

  • Kononenko, N.I., Shcherbatko, A.D. (1988a). Effect of iontophoretic injection of AMP and cAMP on the calcium current in dialyzed snail neurons. Neurophysiology (Kiev) 20:769–776

    CAS  Google Scholar 

  • Kononenko, N.I., Shcherbatko, A.D. (1988b). Furosemide effect on the inward calcium current in snail neurons. Biol. Membr (Moscow) 5:1168–1177

    CAS  Google Scholar 

  • Kononenko, N.I., Kostyuk, P.G., Shcherbatko, A.D. (1986). Properties of cAMP-induced transmembrane current in mollusc neurons. Brain Res. 376:239–245

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A. (1977a). Separation of sodium and calcium currents in the somatic membrane of mollusc neurones. J. Physiol. (London) 270:545–568

    CAS  Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A. (1977b). Effects of calcium and calcium-chelating agents on the inward and outward currents in the membrane of mollusc neurones. J. Physiol. (London) 270:569–580

    CAS  Google Scholar 

  • Kostyuk, P.G., Mironov, S.L. (1982). Theoretical description of calcium channels in the neuronal membrane. Gen. Physiol. Biophys. 1:289–305

    Google Scholar 

  • Kostyuk, P.G., Mironov, S.L. (1986). Some predictions concerning the calcium channel model with different conformational states. Gen. Physiol. Biophys. 6:649–659

    Google Scholar 

  • Kostyuk, P.G., Shuba, Ya.M. (1982). A study of monovalent cation selectivity of calcium EDTA-modified channels. Neurophysiology (Kiev) 14:491–498

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Pidoplichko, V.I. (1975). Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature 257:691–693

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Pidoplichko, V.I., Shakhovalov, Y.A. (1979). Kinetics of calcium inward current activation. J. Gen. Physiol. 73:675–677

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Pidoplichko, V.I. (1981). Calcium inward current and related charge movements in the membrane of snail neurones. J. Physiol. (London) 310:403–421

    CAS  Google Scholar 

  • Kostyuk, P.G., Mironov, S.L., Shuba, Ya.M. (1983). Two ion-selecting filters in the calcium channel of the somatic membrane of mollusc neurons. J. Membr. Biol. 76:83–93

    Article  Google Scholar 

  • Kostyuk, P.G., Tepikin, A.V., Belan, P.V., Mironov, S.L. (1987). Mechanisms of cytoplasmic Ca2+ changes in snail neurones mediated by intracellular Ca2+ stores. Biol. Membr. (Moscow) 4:932–936

    CAS  Google Scholar 

  • Kostyuk, P.G., Shuba, Y.M., Savchenko, A.N. (1988a). Three types of calcium channels in the membrane of mouse sensory neurons. Pfluegers Arch. 411:661–669

    Article  CAS  Google Scholar 

  • Kostyuk, P.G., Shuba, Y.M., Savchenko, A.N., Teslenko, V.I. (1988b). Kinetic characteristics of different calcium channels in the neuronal membrane. The Calcium Channel: Structure, Function and Implications. M. Morad, W. Nayler, S. Kazda, M. Schramm (eds). Springer-Verlag, Berlin, pp 442–464

    Google Scholar 

  • Kostyuk, P.G., Shuba, Y.M., Teslenko, V.I. (1989a). Activation kinetics of single high-threshold calcium channels in the membrane of sensory neurones from mouse embryos. J. Membr. Biol. 110:29–38

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, P.G., Mironov, S.L., Tepikin, A.V., Belan, P.V. (1989b). Cytoplasmic free Ca in isolated snail neurones as revealed by fluorescent probe Fura-2: mechanisms of Ca recovery after Ca load and Ca release from intracellular stores. J. Membr Biol. 110:11–18

    Article  CAS  Google Scholar 

  • Kostyuk, P.G., Luk’yanetz, E.A., Doroshenko, P.A. (1990). Studies of the cAMP influence on calcium currents in mollusc neurones possessing different sensitivity of their calcium conduction to serotonin action. Neurophysiology (Kiev) 22:605–612

    CAS  Google Scholar 

  • Krishtal, O.A., Pidoplichko, V.I. (1981). A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience 6:2599–2601

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic, K., Morris, M.E., Ropert, N. (1986). Changes in free calcium ion concentration recorded inside hippocampal pyramidal cells in situ. Brain Res. 374:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kuno, M., Gardner, P. (1987). Ion channels activated by inositol 1,4,5-triphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304

    Article  PubMed  CAS  Google Scholar 

  • Lacerda, A.E., Rampe, D., Brown, A.M. (1988). Effects of protein kinase C activators on cardiac Ca2+ channels. Nature 335:249–251

    Article  PubMed  CAS  Google Scholar 

  • Lai, F.A., Anderson, K., Rousseau, E., Liu, Q.-Y., Meissner, G. (1988). Evidence for a Ca2+ channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 151:441–449

    PubMed  CAS  Google Scholar 

  • Lee, K.S., Marban, E., Tsien, R.W. (1985). Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J. Physiol. (London) 364:395–411

    CAS  Google Scholar 

  • Levitan, I.B. (1988). Modulation of ion channels in neurons and other cells. Annu. Rev. Neurosci. 11:119–136

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb, D., Madison, D.V., Poenie, M., et al. (1988a). Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons. Neuron 1:355–365

    Article  Google Scholar 

  • Lipscomb, D., Madison, D.V., Poenie, M., Reuter, H., Tsien, R.Y., Tsien, R.W. (1988b). Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proc. Natl. Acad. Sci. U.S.A. 85:2398–2402

    Article  Google Scholar 

  • Llinas, R., Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. (London) 305:171–195

    CAS  Google Scholar 

  • Loirand, G., Pacaud, P., Mironneau, C., Mironneau, J. (1986). Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. Pfluegers Arch. 407:566–568

    Article  CAS  Google Scholar 

  • Lorentz, M., Hedlund, B., Arhem, P. (1988). Morphine activates calcium channels in cloned mouse neuroblastoma cell line. Brain Res. 445:157–159

    Article  PubMed  CAS  Google Scholar 

  • Losinskaya, I.M., Shuba, Y.M. (1989). Low- and high-threshold calcium currents in the membrane of culturedHelix pomatia neurones. Neurophysiology (Kiev) 21:127–129

    Article  Google Scholar 

  • Lotshaw, D.P., Levitan, I.B. (1988). Reciprocal modulation of calcium current by serotonin and dopamine in the identifiedAplysia neuron R15. Brain Res. 439:64–76

    Article  PubMed  CAS  Google Scholar 

  • Lux, H.D. (1988). Studies of the development of voltage-activated calcium channels in vertebrate neurons. Calcium and Ion Channel Modulation. Proceedings, Symposium Honoring R. Eckert, Feb. 26–March 1, 1987. Los Angeles, Ca. A.D. Grinnell, D. Armstrong, M.B. Jackson (eds). Plenum, New York, pp 313–324

    Google Scholar 

  • Lynch, G., Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis. Science 224:1057–1063

    Article  PubMed  CAS  Google Scholar 

  • MacDermott, A.B., Mayer, M.L., Westbrook, G.L., Smith, S.J., Barker, J.L. (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, R.L., Werz, M.A. (1986). Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J. Physiol. (London) 377:237–249

    CAS  Google Scholar 

  • Macdonald, R.L., Skerritt, J.H., Werz, M.A. (1986). Adenosine agonists reduce voltage-dependent calcium conductance of mouse sensory neurones in cell culture. J. Physiol. (London) 370:75–90

    CAS  Google Scholar 

  • Marchetti, C., Brown, A.M. (1988). Protein kinase activator 1-oleoyl-2-acetyl-sn-glycerol inhibits two types of calcium currents in GH3 cells. Am. J. Physiol. 254:206–210

    Google Scholar 

  • Marchetti, C., Carbone, E., Lux, H.D. (1986). Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pfluegers Arch 406:104–111

    Article  CAS  Google Scholar 

  • Marom, S., Dagan, D. (1987). Calcium current in growth balls from isolated Helix aspersa neuronal growth cones. Pfluegers Arch. 409:578–581

    Article  CAS  Google Scholar 

  • Matsuda, H. (1986). Sodium conductance in calcium channels of guinea-pig ventricular cells induced by removal of external calcium ions. Pfluegers Arch. 407:465–475

    Article  CAS  Google Scholar 

  • Matteson, D.R., Armstrong, C.M. (1986). Properties of two types of calcium channels in clonal pituitary cells. J. Gen. Physiol. 87:161–182

    Article  PubMed  CAS  Google Scholar 

  • McCleskey, E.W., Almers, W. (1985). The Ca channel in skeletal muscle is a large pore. Proc. Natl. Acad. Sci. U.S.A. 82:7149–7153

    Article  PubMed  CAS  Google Scholar 

  • McCleskey, E.W., Fox, A.P., Feldman, D.H., Cruz, L.J., Olivera, B.M., Tsien, R.W., Yoshikami, D. (1987). ω-Conotoxin: Direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. U.S.A. 84:4327–4331

    Article  PubMed  CAS  Google Scholar 

  • McFadzean, I. (1988). The ionic mechanisms underlying opioid actions. Neuropeptides 11:171–181

    Article  Google Scholar 

  • McFadzean, I., Docherty, R.J. (1987). Noradrenaline depresses a high-threshold calcium current in a neuronal cell. Neurosci. Lett. Suppl. 29, 24

    Google Scholar 

  • Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., Numa, S. (1989). Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:230–233

    Article  PubMed  CAS  Google Scholar 

  • Mironov, S.L., Tepikin, A.V. (1988). On the nature of cyclic changes in the intracellular concentration of Ca2+ ions. Biol. Membr. (Moscow), 5, 528–535

    CAS  Google Scholar 

  • Mironov, S.L., Tepikin, A.V., Grischchenko, A.V. (1985). Two calcium currents in the somatic membrane of the mollusc neurones. Neurophysiology (Kiev) 17:627–632

    CAS  Google Scholar 

  • Mitra, R., Morad, M. (1986). Two types of calcium channels in guinea pig ventricular myocytes. Proc. Natl. Acad. Sci. U.S.A. 83:5340–5344

    Article  PubMed  CAS  Google Scholar 

  • Mo, N., Ammari, R., Dun, H.J. (1985). Prostaglandin E1 inhibits calcium-dependent potentials in mammalian sympathetic neurons. Brain Res. 334:325–329

    Article  PubMed  CAS  Google Scholar 

  • Morad, M., Lux, H.D. (1987). Single unit analysis of the proton-induced transformation of Ca2+ channel in sensory neuron. Biophys. J. 51 (part 2):32

    Google Scholar 

  • Morad, M., Davies, N.M., Kaplan, J.H., Lux, H.D. (1988). Inactivation and block of calcium channels by photo-released Ca2+ in dorsal root ganglion neurons. Science 241:842–844

    Article  PubMed  CAS  Google Scholar 

  • Nachshen, D.A. (1984). Selectivity of the Ca binding site in synaptosome Ca channels. J. Gen. Physiol. 83:941–967

    Article  PubMed  CAS  Google Scholar 

  • Nagasaki, K., Kasai, K. (1984). Channel selectivity and gating specificity of calcium-induced calcium release channel in isolated sarcoplasmic reticulum. J. Biochem. 96:1769–1775

    PubMed  CAS  Google Scholar 

  • Nahorski, S.R. (1988). Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci. 11:444–448

    Article  PubMed  CAS  Google Scholar 

  • Nalivaiko, E.D. (1986). Modulation of calcium conductance for somatic membrane of rat sensory neurons during activation of the adenylate cyclase system. Neurophysiology (Kiev) 18:557–560

    CAS  Google Scholar 

  • Narahashi, T., Tsunoo, A., Yoshii, M. (1987). Characterization of two types of calcium channels in mouse neuroblastoma cells. J. Physiol. (London) 383:231–249

    CAS  Google Scholar 

  • Nasmith, P.E., Grinstein, S. (1987). Are Ca2+ channels in neutrophils activated by a rise in cytosolic free Ca2+? FEBS Lett. 221:95–100

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M.T. (1986). Interactions of divalent cations with single calcium channels from rat brain synaptosomes. J. Gen. Physiol. 87:201–222

    Article  PubMed  CAS  Google Scholar 

  • Nilius, B., Hess, P., Lansman, J.B., Tsien, R.W. (1985). A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446

    Article  PubMed  CAS  Google Scholar 

  • Nowycky, M.C., Fox, A.P., Tsien, R.W. (1984). Two components of calcium channel current in chick dorsal root ganglion cells. Biophys. J. 45:36a

    Google Scholar 

  • Nowycky, M.D., Fox, A.P., Tsien, R.W. (1985a). Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443

    Article  PubMed  CAS  Google Scholar 

  • Nowycky, M.C., Fox, A.P., Tsien, R.W. (1985b). Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. Proc. Natl. Acad. Sci. U.S.A. 82:2178–2182

    Article  PubMed  CAS  Google Scholar 

  • Ohya, Y., Kitamura, K., Kuriyama, H. (1987). Modulation of ionic currents in smooth muscle balls of the rabbit intestine by intracellularly perfused ATP and cyclic AMP. Pfluegers Arch. 408:465–473

    Article  CAS  Google Scholar 

  • Olivera, B.M., Cruz, L.J., Santos, V. de, LeCheminant, G.W., Griffin, D., Zeikus R., McIntosh, J.M., Galyean R., Varga, J., Gray, W.R., Rivier, J. (1987). Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using ω-conotoxin fromConus magus venom. Biochemistry 26:2086–2090

    Article  PubMed  CAS  Google Scholar 

  • Oyama, Y., Akaike, N., Nishi, K. (1986). Effects of n-alkanols on the calcium current of intracellularly perfused neurons ofHelix aspersa. Brain Res. 376:280–284

    Article  PubMed  CAS  Google Scholar 

  • Palade, P. (1987). Drug-induced Ca2+ release from isolated sracoplasmic reticulum. II. Release involving a Ca2+-induced Ca2+ release channel. J. Biol. Chem. 262:6142–6148

    PubMed  CAS  Google Scholar 

  • Palade, P.T., Almers, W. (1978). Slow Na+ and Ca2+ currents across the membrane of frog skeletal muscle fibres. Biophys. J. 21:168a

    Google Scholar 

  • Paupardin-Tritsch, D., Hammond, C., Gerschenfeld, H.M. (1986a). Serotonin and cyclic GMP both induce an increase of the calcium current in the same identified molluscan neuones. J. Neurosci. 6:2715–2723

    PubMed  CAS  Google Scholar 

  • Paupardin-Tritsch, D., Hammond, C., Gerschenfeld, H.M., Nairn, A.C., Greengard, P. (1986b). cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones. Nature 323:812–814

    Article  PubMed  CAS  Google Scholar 

  • Pearce, I.A., Cambray-Deakin, M.A., Burgoyne, R.D. (1987). Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett. 223:143–147

    Article  PubMed  CAS  Google Scholar 

  • Peres, A., Sturani, E., Zippel, R. (1988). Properties of the voltage-dependent calcium channel of mouse Swiss 3T3 fibroblasts. J. Physiol. (London) 401:639–655

    CAS  Google Scholar 

  • Plant, T.D., Standen, N.B., Ward, T.A. (1983). Calcium injection and calcium channel inactivation. Neurology and Neurobiology, Vol. 5, The Physiology of Excitable Cells. A.D. Grinnell, W.J. Moody, Jr. (eds). Alan R. Liss, New York, pp. 39–49

    Google Scholar 

  • Ponomarev, V.N., Zablockaite, D.P., Narusevicius, E.V. (1985). Calcium-dependency of calcium-channel inactivation in snail neurones. Biol. Membr. (Moscow) 2:50–55

    CAS  Google Scholar 

  • Pott, L., Lipp, P. (1987). Dual effect of the Ca2+ calmodulin antagonist fendiline on Ca current in single cardiac cells. J. Mol. Cell. Cardiol. 19 (Suppl. 3):75

    Article  Google Scholar 

  • Rane, S.G., Holz, G.G., Dunlap, K. (1987). Dihydropyridine inhibition of neuronal calcium current and substance P release. Pfluegers Arch. 409:361–366

    Article  CAS  Google Scholar 

  • Rasmussen, H., Kojima, I., Kojima, K., Zawalich, W., Apfeldorf, W. (1985). Calcium as intracellular messenger: Sensitivity modulation, C-kinase pathway, and sustained cellular response. Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Vol. 18. P. Greengard, G.A. Robinson (eds). Raven, New York, pp 159–193

    Google Scholar 

  • Reuter, H. (1974). Localization of bete adrenergic receptors and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J. Physiol. (London) 242:429–451

    CAS  Google Scholar 

  • Rodriguez, R., Toledo, A., Brandner, R., Sabria, J., Rodriguez, J., Blanco, I. (1988). Histamine-stimulated synaptosomal Ca uptake through activation of calcium channels. Biochem. Biophys. Res. Commun. 153:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Rorsman, P. (1988). Two types of Ca2+ currents with different sensitivities to organic Ca2+ channel antagonists in guinea pig pancreatic α2 cells. J. Gen. Physiol. 91:243–254

    Article  PubMed  CAS  Google Scholar 

  • Rorsman, P., Trube, G. (1986). Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage-clamp conditions. J. Physiol. (London) 374:531–550

    CAS  Google Scholar 

  • Rousseau, E., Smith, J.S., Henderson, J., Meissner, G. (1986). Single channel and45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel. Biophys. J. 50:1009–1014

    PubMed  CAS  Google Scholar 

  • Ruth, P., Röhrkasten, A., Biel, M., Bosse, E., Regulla, S., Meyer, H.E., Flockerzi, V., Hofmann, F. (1989). Primary structure of the β subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 245:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Saida, K., van Breemen, C. (1985). Cyclic nucleotides and calcium movements. Calcium Entry Blockers and Tissue Protection. T. Godfraind, P.M. Vanhoutte, S. Govoni, R. Paoletti (eds). Raven, New York, pp 41–50

    Google Scholar 

  • Saida, K., van Breemen, C. (1987). GTP requirement for inositol-1,4,5-triphosphate-induced Ca2+ release from sarcoplasmic reticulum in smooth muscle. Biochem. Biophys. Res. Commun. 144:1313–1316

    Article  PubMed  CAS  Google Scholar 

  • Schmid, A., Barhanin, J., Mourre, C., Coppola, T., Borsotto, M., Lazdunski, M. (1986). Antibodies reveal the cytolocalization and subunit structure of the 1,4-dihydropyridine component of the neuronal Ca2+ channel. Biochem. Biophys. Res. Commun. 139:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Schneider, A.S., Cline, H.T., Rosenheck, K., Sonenberg, M. (1981). Stimulus-secretion coupling in isolated adrenal chromaffin cells: Calcium channel activation and possible role of cytoskeletal elements. J. Neurochem. 37:567–575

    Article  PubMed  CAS  Google Scholar 

  • Scott, R.H., Dolphin, A.C. (1987). Activation of a G protein promotes agonist responses to calcium channel ligands. Nature 330:760–762

    Article  PubMed  CAS  Google Scholar 

  • Shiina, T., Wayne, R., Lim Tang, H.Y., Tazawa, M. (1988). Possible involvement of protein phosphorylation/dephosphorylation in the modulation of Ca2+ channel in tonoplast-free cells of Nitellopsis. J. Membr. Biol. 102:255–264

    Article  CAS  Google Scholar 

  • Shimahara, T., Icard-Liepkalns, C. (1987). Activation of enkephalin receptors reduces calcium conductance in neuroblastoma cells. Brain Res. 415:357–361

    Article  PubMed  CAS  Google Scholar 

  • Shuba, Y.M., Lyubanova, O.P. (1988). Calcium permeability of PC12 pheochromocytoma cells. Biol. Membr. (Moscow) 5:698–710

    Google Scholar 

  • Simashko, S.M., Weiland, G.A., Oswald, R.E. (1988). Pharmacological characterization of two calcium currents in GH3 cells. Am. J. Physiol. 254:E328-E336

    Google Scholar 

  • Smith, J.S., Coronado, R., Meissner, G. (1986). Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J. Gen. Physiol. 88:573–588

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.S., Imagawa, T., Ma, J., Fill, M., Campbell, K.P., Coronado, R. (1988). Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J. Gen. Physiol. 92:1–26

    Article  PubMed  CAS  Google Scholar 

  • Standen, N. (1981). Ca channel inactivation by intracellular Ca injection intoHelix neurones. Nature 293:158–159

    Article  PubMed  CAS  Google Scholar 

  • Streit, J., Lux, H.D. (1987). Voltage dependent calcium currents in PC12 growth cones and cells during NGF-induced cell growth. Pfluegers Arch. 408:634–641

    Article  CAS  Google Scholar 

  • Strong, J.A., Fox, A.P., Tsien, R.W., Kaczmarek, I.K. (1987). Stimulation of protein kinase C recruits covert calcium channels inAplysia bag cell neurons. Nature 325:714–717

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Kurtz, G., Katz, G.M., Reuben, J.P. (1987). Currents carried by sodium ions through transient calcium channels in clonal GH3 pituitary cells. Pfluegers Arch. 410:345–347

    Article  CAS  Google Scholar 

  • Suszkiw, J.B., O’Leary, M.E., Murawsky, M.M., Wang, T. (1986). Presynaptic calcium channels in rat cortical synaptosomes: Fast-kinetics of phasic calcium influx, channel inactivation, and relationship in nitrendipine receptors. J. Neurosci. 6:1349–1357

    PubMed  CAS  Google Scholar 

  • Suszkiw, J.B., Murawsky, M.M., Fortner, R.C. (1987). Heterogeneity of presynaptic calcium channels revealed by specific differences in the sensitivity of synaptosomal45Ca entry to ω-conotoxin. Biochem. Biophys. Res. Commun. 145:1283–1286

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, N., Yoshioka, T. (1987). Differential blocking action of synthetic ω-conotoxin on components of Ca2+ channel current in clonal GH3 cells. Neurosci. Lett. 75:235–239

    Article  PubMed  CAS  Google Scholar 

  • Swandulla, D., Carbone, E., Schaefer, K., Lux, H.D. (1987). Effect of menthol on two types of Ca currents in cultured sensory neurones of vertebrates. Pfluegers Arch. 409:52–59

    Article  CAS  Google Scholar 

  • Takahashi M., Seagar, M.J., Jones, J.F., Reber, B.F.X., Catterall, W.A. (1987). Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 84:5478–5482

    Article  PubMed  CAS  Google Scholar 

  • Tang Cha-Min, Presser, F., Morad, M. (1988). Amiloride selectively blocks the low threshold (T) calcium channel. Science 240:213–215

    Article  PubMed  CAS  Google Scholar 

  • Tepikin, A.V., Belan, P.V., Mironov, S.L. (1987). Changes in intracellular Ca2+ in isolated snail neurones revealed by fluorescent probe Fura-2. Biol. Membr. (Moscow) 4:882–889

    CAS  Google Scholar 

  • Tokimasa, T. (1985). Intracellular Ca2+ ions inactivate K+-current in bullfrog sympathetic neurons. Brain Res 337:386–391

    Article  PubMed  CAS  Google Scholar 

  • Tscharner, V. von, Prod’hom, B., Baggiolini, M., Reuter, H. (1986). Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324:369–372

    Article  Google Scholar 

  • Tsien, R.W., Bean, B.P., Hess, P., Lansmon, J.B., Nilius, B., Nowycky, M.C. (1986). Mechanisms of calcium channel modulation by β-adrenergic agents and dihydropyridine calcium agonists. J. Mol. Cell. Cardiol. 18:691–710

    Article  PubMed  CAS  Google Scholar 

  • Tsunoo, A., Yoshii, M., Narahashi, T. (1984). Two types of calcium channels in neuroblastoma cells and their sensitivities to cyclic AMP. Soc. Neurosci. Abstr. 10 (part 1):527

    Google Scholar 

  • Tsunoo, A., Yoshii, M., Narahashi, T. (1986). Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells. Proc. Natl. Acad. Sci. U.S.A. 83:9832–9836

    Article  PubMed  CAS  Google Scholar 

  • Tytgat, J., Nilius, B., Vereecke, J., Carmeliet, E. (1988). The T-type Ca channel in guinea-pig ventricular myocytes is insensitive to isoproterenol. Pfluegers Arch. 411:704–706

    Article  CAS  Google Scholar 

  • Vassilev, P.M., Kanazirsko, M.P., Tien, H. (1987). Ca2+ channels from brain microsomal membranes reconstituted in patch-clamped bilayers. Biochim. Biophys. Acta: Biomembr. 897(M146):324–330

    Article  CAS  Google Scholar 

  • Veselovsky, N.S., Fedulova, S.A. (1983). Two types of calcium channels in the somatic membrane of rat dorsal root ganglion neurones. Dokl. Akad. Nauk SSSR 268:747–750

    Google Scholar 

  • Wanke, E., Ferroni, A., Malgaroli, A., Ambrosini, A., Pozzan, T., Meldolesi, J. (1987). Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc. Natl. Acad. Sci. U.S.A. 84:4313–4317

    Article  PubMed  CAS  Google Scholar 

  • Wei, A., Salkoff, L. (1986). OccultDrosophila calcium channels and twinning of calcium and voltage-activated potassium channels. Science 233:780–782

    Article  PubMed  CAS  Google Scholar 

  • Werz, M.A., Macdonald, R.L. (1985). Barbiturates decrease voltage-dependent calcium conductance of mouse neurons in dissociated cell culture. Mol. Pharmacol. 28:269–277

    PubMed  CAS  Google Scholar 

  • Westbrook, G.L., Mayer, M.L. (1988). Divalent cations as modulators of NMDA-receptor channels of mouse central neurons. Calcium and Ion Channel Modulation. Proceedings, Symposium Honiring R. Eckert. Feb. 26–March 1, 1987. Los Angeles, Ca. A.D. Grinnell, D. Armstrong, M.B. Jackson (eds). Plenum, New York, pp 383–393

    Google Scholar 

  • Williams, J.T., North, R.A. (1985). Catecholamine inhibition of calcium action potentials in rat locus coeruleus neurones. Neuroscience 14:103–109

    Article  PubMed  CAS  Google Scholar 

  • Yaari, Y., Hamon, B., Lux, H.D. (1987). Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235:680–682

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, D.T., Kleeman, C.R., Muallem, S. (1987). Protein kinase C-activated calcium channel in the osteoblast-like clonal osteosarcoma cell line UMR-106. J. Biol. Chem. 262:14967–14973

    PubMed  CAS  Google Scholar 

  • Yoshii, M., Tsunoo, A., Narahashi, T. (1988). Gating and permeation properties of two types of calcium channels in neuroblastoma cells. Biophys. J. 54:885–895

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyuk, P.G. Calcium channels in cellular membranes. J Mol Neurosci 2, 123 (1990). https://doi.org/10.1007/BF02896838

Download citation

  • DOI: https://doi.org/10.1007/BF02896838

Keywords

Navigation