Skip to main content
Log in

Agrobacterium-mediated transformation: state of the art and future prospect

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Great progress has been made in recent years in studies on the mechanism ofAgrobacterium-medicated transformation and its application. Many details of the key molecular events within the bacterial cells involved in T-DNA transfer have been elucidated, and it is notable that some plant factors which were elusive before are purified and characterized. Vast kinds of species, which were either recalcitrant to or not included in the host range ofAgrobacterium, can now be transformed by this bacterium, and they include the very important cereal species, gymnosperms, yeast and many filamentous fungi. The simplein vivo transformation of tissue in intact plants and the “agrolistic” methods to transform recalcitrant plants are the two novel technical achievements. Combined with other powerful techniques such as bacterial artificial chromosome, very large DNA fragment can be transformed into the plant genome byAgrobacterium. Further studies will elucidate more plant-encoded factors involved in T-DNA transformation and there is a need to develop more powerfulAgrobacterium-based transformation systems to meet different needs in basic research and crop improvement practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, G. L., Fang, H. J., Plant Genetic Engineering: Principle and Technique (in Chinese), Beijing: Science Press, 1998.

    Google Scholar 

  2. Chan, M. T., Chang, H. H., Ho, S. L. et al., Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene, Plant Mol. Biol., 1993, 22: 491.

    Article  PubMed  CAS  Google Scholar 

  3. Bundock, P., den Dulk-Ras, A., Beijersbergen, A. et al., Trans-kingdom T-DNA transfer fromAgrobacterium toSaccharomyces Cerevisiae. EMBO J, 1995, 14(3): 3206.

    PubMed  CAS  Google Scholar 

  4. Hamilton, C., M., Frary, A., Lewis, C., et al., Stable transfer of intact high molecular weight DNA into plant chromosomes, Proc. Natl. Acad. Sci. USA, 1996, 93: 9975.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, Y. G., Shirano, Y., Fukaki, H. et al., Complementation of mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning, Proc. Natl. Acad. Sci. USA, 1999, 96: 6535.

    Article  PubMed  CAS  Google Scholar 

  6. Zambryski, P. C., Chronicles from the Agrobaclerium-plant cell DNA transfer story, Annu. Rev. Plant Physiol. Plant. Mol. Biol., 1992, 43:465.

    Article  CAS  Google Scholar 

  7. Hooykaas, P. J. J., Schilperoorl, R. A.,Agrobacterium and plant genetic engineering, Plant Mol. Biol., 1992, 19: 15.

    Article  PubMed  CAS  Google Scholar 

  8. Hooykaas, P. J. J., Beijersbergen, A. G. M., The virulence system ofAgrobacterium tumefaciens, Annu. Rev. Phytopathol., 1994, 32: 157.

    CAS  Google Scholar 

  9. Zupan, J. R., Zambryski, P. C., Transfer of T-DNA fromAgrobacterium to the plant cell, Plant Physiol., 1995, 107: 1041.

    Article  PubMed  CAS  Google Scholar 

  10. Fullner, K. J., Lara, J. C., Nester, E. W., Pilus assembly byAgrobacterium T-DNA transfer genes, Science, 1996, 273: 1107.

    Article  PubMed  CAS  Google Scholar 

  11. Deng, W., Chen, L., Liang, X. et al., VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 inAgrobacterium, Mol. Microbiol., 1999, 31(6): 1795.

    Article  PubMed  CAS  Google Scholar 

  12. Sundberg, C. D., Rean, W., TheAgrohacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction, J. Bacteriol., 1999, 181(21): 6850.

    PubMed  CAS  Google Scholar 

  13. Sundberg, C., Meek, L., Carroll, K. et al., VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 1545 fromAgrobacterium tumefaciens into plant cells, J. Bacterial., 1996, 178(4): 1207.

    CAS  Google Scholar 

  14. Lee, L. Y., Gelvin, S. B., Kado, C., I., pSa causes oncogenic suppression ofAgrobacterium by inhibiting VirE2 protein export, J. Bacteriol., 1999, 181(1): 186.

    PubMed  CAS  Google Scholar 

  15. Gelvin, S. B.,Agrobcterium VlrE2 proteins can form a complex T strands in the plant cytoplasm, J. Bacteriol., 1998, 180(16): 4300.

    PubMed  CAS  Google Scholar 

  16. Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., et al., T-DNA integration: a model of illegitimate recombination in plants, EMBOJ., 1991, 10(3): 679.

    Google Scholar 

  17. Wenck, A., Coako, M., Kanevski, I. et al., Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation, Plant Mol. Biol., 1997, 34: 913.

    Article  PubMed  CAS  Google Scholar 

  18. Hiei, Y., Komari, T., Kubo, T., Transformation of rice mediated byAgrobacterium tumefaciens, Plant Mol. Biol., 1997, 35: 205.

    Article  PubMed  CAS  Google Scholar 

  19. Nam, J., Mysore, K. S., Zheng, C., et al., Identification of T-DNA taggedArabidopsis mutants that are resistant to transformation byAgrobacterium, Mol. Gen. Genet., 1999, 261(3): 429.

    Article  PubMed  CAS  Google Scholar 

  20. Preuss, S. B., Jiang, C., Z., Baik, H. K. et al., Radiation-sensitiveArabidopsis mutants are proficient for T-DNA transformation, Mol. Gen. Genet., 1999, 261(4–5): 623.

    PubMed  CAS  Google Scholar 

  21. Ballas, N., Citovsky, V., Nuclear localization signal binding protein fromArabidopsis mediates nuclear import ofAgrobacterium VirD2 protein, Proc. Natl. Acad. Sci. USA, 1997, 94: 10723.

    Article  PubMed  CAS  Google Scholar 

  22. Deng, W. Y., Chan, L. H., Wood, D. W. et al.,Agrobacterium VirD2 protein interacts with plant host cyclophilins, Proc. Natl. Acad. Sci. USA, 1998, 95(12): 7040.

    Article  PubMed  CAS  Google Scholar 

  23. Wenck, A. R., Quinn, M., Whetten, R. W. et al., High efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda), Plant Mol. Biol., 1999, 39(3): 407.

    Article  PubMed  CAS  Google Scholar 

  24. Piers, K. L., Heath, J. D., Liang, X. Y. et al.,Agrobacterium tumefaciens-medialed transformation of yeast, Proc. Natl. Acad. Sci. USA, 1996, 93: 1613.

    Article  PubMed  CAS  Google Scholar 

  25. deGroot, M. J. A., Bundock, P., Hooykaas, P. J. J. et al.,Agrobacterium tumefaciens-mediated transformation of filamentous fungi, Nat. Biotechnol., 1998, 16: 839.

    Article  CAS  Google Scholar 

  26. Gouka, R. J., Gerk, C., Hooykaas, P. J. J. et al., Transformation ofAspergillus awamori byAgrobacterium tumefaciens-mediated homologous recombination, Nat. Biotechnol., 1999, 17(6): 598.

    Article  PubMed  CAS  Google Scholar 

  27. Bundock, P., Hooykaas, P. J. J., Integration ofAgrobacterium tumefaciens T-DNA in theSaccharomyces cerevisiae genome by illegitimate recombination, Proc. Natl. Acad. Sci. USA, 1996, 93: 15272.

    Article  PubMed  CAS  Google Scholar 

  28. Bundock, P., Mrczek, K., Winkler, A. A. et al., T-DNA fromAgrobacterium tumefaciens as an efficient tool for gene targeting inKluyveromyces lactis, Mol. Gen. Genet., 1999, 261 (1): 115.

    Article  PubMed  CAS  Google Scholar 

  29. Bytébier, B. F., Deboeck, F., Greve, H. D. et al., T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Aspargus officinalis, Proc. Nall. Acad. Sci. USA, 1987, 84: 5345.

    Article  Google Scholar 

  30. Smith, R. H., Hood, E. E.,Agrobacterium tumefaciens transformation of monocotyledons, Crop Science, 1995, 35(2): 301.

    Google Scholar 

  31. Hiei, Y., Ohta, S., Komari, T. et al., Efficient transformation of rice (Oryza sativa L.) mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA, Plant J., 1994, 6: 271.

    Article  PubMed  CAS  Google Scholar 

  32. Ishida, Y., Saito, H., Ohta, S. et al. High efficiency transformation of maize (Zea mays L.) mediated byAgrobacterium tumefaciens, Nat. Biotechnol., 1996, 14(6): 745.

    Article  PubMed  CAS  Google Scholar 

  33. Cheng, M., Fry, J. E., Pang, S. Z. et al., Genetic transformation of wheat mediated byAgrobacterium tumefaciens, Plant Physiol., 1997, 115:971.

    PubMed  CAS  Google Scholar 

  34. Tingay, S., McElroy, D., Kalla, R. et al.,Agrobacterium tumefaciens-mediated barley transformation, Plant J., 1997, 11(6): 1369.

    Article  CAS  Google Scholar 

  35. Enriquez, O. G. A., Vazquez, P. R. I., Prieto, S. D. L. et al., Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation, Planta, 1998, 206(1): 20.

    Article  Google Scholar 

  36. Hiei, Y, Komari, T., Stable inheritance of transgenes in rice plants transformed byAgrobacterium tumefaciens, Third International Rice Genetics Symposium, October 16 to 20, 1995, Manila., Philippines, (http://www.cgiar.org/irri/RGIII stable 11. pdf).

  37. Grimsley, N., Hohn, T., Davis, J. W. et al., Agrobacterium-mediated delivery of infectious maize streak virus into maize plants, Nature, 1987, 325: 177.

    Article  CAS  Google Scholar 

  38. Graves, A. C., F., Goldman, S. L., The transformation ofZea mays seedlings withAgrobacterium tumefaciens, Plant Mol. Biol., 1986, 7:43.

    Article  CAS  Google Scholar 

  39. Park, S. H., Pinson, S. R. M., Smith, R. H., T-DNA integration into genomic DNA of rice followingAgrobacterium inoculation of isolated shoot apices, Plant Mol. Biol., 1996, 32: 1135.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, J., Xu, R. J., Elliott, M. C., et al., Agrobacterium-mediated transformation of eliteindica andjaponica rice cultivars, Mol. Biotechnol., 1997, 8(3): 223.

    Article  PubMed  CAS  Google Scholar 

  41. Rashid, H., Yokoi, S., Toriyama, K. et al., Transgenic plant production mediated byAgrobacterium inIndica rice, Plant Cell Rep., 1996, 15:727.

    Article  CAS  Google Scholar 

  42. Aldemita, R. R., Hodges, T. K.,Agrobacterium tumefaciens-mediated transformation ofJaponica andIndica rice varieties, Planta, 1996, 199: 612.

    Article  CAS  Google Scholar 

  43. Sahi, S. V., Chilton, M. D., Chilton, W. S., Corn metabolites affect growth and virulence ofAgrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA, 1990, 87: 3879.

    Article  PubMed  CAS  Google Scholar 

  44. Xu, Y., Shi, J., Li, B. J., Regulation ofAgrobacterium vir gene expression by metabolites from monocot and dicot plants, Acta Genetica Sinica (in Chinese), 1993, 20(1): 59.

    CAS  Google Scholar 

  45. Xu, Y., Jia, J. F., Zheng, G. C., Phenolic compounds can promote efficient transformation of plants byAgrobacterium, Chinese Science Bulletin, 1989, 34(22): 1902.

    CAS  Google Scholar 

  46. Guo, G. Q., Maiwald, F., Lorenzen, P. et al., Factors influencing T-DNA transfer into wheat and barley cells byAgrobacterium tumefaciens, Cereal Research Communications, 1998, 26(1): 15.

    Google Scholar 

  47. Raineri, D. M., Bottino, P., Gordon, M. P. et al., Agrobacterium-mediated transformation of rice (Oryza sativa L.), Bio/technology, 1990, 8: 33.

    Article  CAS  Google Scholar 

  48. Gubba, S., Xie, Y. H., Das, A., Regulation ofAgrobacterium tumefaciens virulence gene expression: isolation of a mutation that restoresvirGD52E function, Molecular Plant-Microbe Interactions, 1995, 8(5): 788.

    PubMed  CAS  Google Scholar 

  49. McLean, B. G., Greene, E. A., Zambryski, P. C., Mutantsof Agrobacterium VirA that activatesvir gene expression in the absence of the inducer acetosyringone, J. Biol. Chem., 1994, 269(4): 2645.

    PubMed  CAS  Google Scholar 

  50. Hansen, G., Das, A., Chilton, M. D., Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium, Proc. Natl. Acad. Sci. USA, 1994, 91: 7603.

    Article  PubMed  CAS  Google Scholar 

  51. Li, W., Chen, L., Cai, D. T. et al., A new approach for gene transfer intoCitrus, Acta Botanica Sinica, 1997, 39(8): 782.

    Google Scholar 

  52. Clough, S. J., Beni, A. F. Dip, F., A simplified method for Agrobacterium-mediated transformation ofArabidopsis thaliana, Plant J., 1998, 16(6): 735.

    Article  PubMed  CAS  Google Scholar 

  53. Hansen, G., Chilton, M. D., “Agrolistic” transformation of plant cells: Integration of T-strands generated in planta, Proc. Natl. Acad. Sci. USA, 1996, 93: 14978.

    Article  PubMed  CAS  Google Scholar 

  54. Hansen, G., Shillito, R. D., Chilton, M. D., T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes, Proc. Natl. Acad. Sci. USA, 1997, 94: 11726.

    Article  PubMed  CAS  Google Scholar 

  55. Ziemienowicz, A., Gorlich, D., Lanka, E. et al., Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium, Proc. Natl. Acad. Sci. USA, 1999, 96(7): 3729.

    Article  PubMed  CAS  Google Scholar 

  56. Hamilton, C., M., A binary-BAC system for plant transformation with high-molecular-weight DNA, Gene, 1997, 200: 107.

    Article  PubMed  CAS  Google Scholar 

  57. Vergunst, A. C., Jansen, L. E. T., Hooykaas, P. J. J., Site-specific integration ofAgrobacterium T-DNA inArabidopsis thaliana mediated by Cre recombinase, Nucleic Acids Res., 1998, 26(11): 2729.

    Article  PubMed  CAS  Google Scholar 

  58. Mysore, K. S., Nam, J., Gelvin, S. B., An Arabidopsis histone H2A mutant is deficient inAgrobacterium T-DNA integration, Proc. Natl. Acad. Sci. USA. 2000, 97: 948.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqin Guo.

About this article

Cite this article

Li, W., Guo, G. & Zheng, G. Agrobacterium-mediated transformation: state of the art and future prospect. Chin.Sci.Bull. 45, 1537–1546 (2000). https://doi.org/10.1007/BF02886209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02886209

Keywords

Navigation