Skip to main content
Log in

Neodymium cations Nd3+ were transported to the interior ofEuglena gracilis 277

  • Paper
  • Published:
Chinese Science Bulletin

Abstracts

Euglena gracilis 277, a unicellular green alga, demonstrated remarkable ability to transport Nd3+ to the cell compartments. For a given amount of Nd3+ and cells, the results of ICP-AES indicated that the cellular uptake of Nd3+ was independent of Nd3+ concentration in the bulk solution. The average uptake of Nd3+ per cell (m Nd) is proportional to a parameter ξ — the ratio of neodymium content to the cell counts of the system. A novel approach for probing cellular neodymium by tetraiodotetra chlorofluorescein (I4TCF) has been devised. Data derived from the cryosections of I4TCF-Nd3+ stained cells and EDAX of the fast freezing ultrathin cryosections indicate that Nd3+ is distributed over the cell compartments. Chloroplasts are the major compartments as the residence of Nd3+ in the alga. The transport should be against a concentration gradient of Nd3+ on the order of five, even higher. It is proposed that a calcium ion channel would play an important role in the Nd3+ transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, P. H., Rathjen, A. H., Graham, R. D. et al., Rare earth elements in biological systems, in Handbook of Physics and Chemistry of Rare Earths (eds. Gschneider, K. A. Jr., Eyring, L.), Vol. 13, Amsterdam: Elsevier Science Publisher, 1990, 423.

    Google Scholar 

  2. Ni, J. Z., Bioinorganic chemistry of Rare Earth Elements (in Chinese), Beijing: Science Press, 1995.

    Google Scholar 

  3. Hirano, S., Suzuki, K. T., Exposure, metabolism and toxicity of rare earths and related compounds, Environmental Health Perspectives, 1996, 104(17): 85.

    Article  PubMed  CAS  Google Scholar 

  4. Sileio, A., Mauro, B., Lanthanide(III) chelates for NMR biomedical applications, Chemical Society Reviews, 1998, 27: 19.

    Article  Google Scholar 

  5. Rath, C., Joseph, P. M., A comparison of beam-hardening artifacts in X-ray computerized tomography with gadolinium and iodine contrast agents, Medical Physics (Woodbury), 1995, 22(12): 1977.

    Article  Google Scholar 

  6. Haener, R., Hall, J., The sequence-specific cleavage of RNA by artificial chemical ribonucleases, Antisense-Nucleic Acid Drug Dev., 1997, 7(4): 423.

    CAS  Google Scholar 

  7. Evans, C. H., Interesting and useful biochemical properties of lanthanides, TIBS, 1983, 445.

  8. Jin, C. Z., Kang, L., Sheng, Z. Q. et al., Cytochemical behavior of neodymium inEuglena gracilis, Academic Periodical Abstracts of China (in Chinese), 1998, 4(8): 976.

    Google Scholar 

  9. Wang, L. F., Ma, Z. L., Wu, J. G. et al., The structures and electrical properties of diiodofluorescein and tetraiodotetrachlorofluorescein-Nd3+ complexes, Chinese Science Bulletin (in Chinese), 1986; 31(5): 350.

    Google Scholar 

  10. Inoué, S., Video Microscopy, New York: Plenum Press, 1986.

    Google Scholar 

  11. Yu, Y. F., Huang, H., Ling, Y. P. et al.,In situ cryofixation and cryoultramicrotomy on biological tissue, Chinese Journal of Physical Medcine (in Chinese), 1993, 15(3): 191.

    Google Scholar 

  12. Alberts, B., Bray, D., Lewis, J. et al., Molecular Biology of the Cell, 3rd ed., New York & London: Garland Publishing, 1994, 482.

    Google Scholar 

  13. Lehrmann, R., Seelig, J., Absorption of Ca2+ and La3+ to bilayer membranes: measurement of the absorption enthalpy and binding constant with titration calorimetry, Biochim. Biophys. Acta, 1994, 1189: 89.

    Google Scholar 

  14. Liu, P. J., Wang, W. Y., The preparation and properties of I4TCF, Applied Chemistry (in Chinese), 1990, 7(2): 80.

    CAS  Google Scholar 

  15. According to Mamdanian algorithm, for every output component indexj, the inference relation of Song, Zhang Y. M., Zhang, Y. M., Qu, X. D. et al., Study on the properties of tetrachlorotetraiodofluorescein-rare earth complex, Rare Earth (in Chinese), 1992, 6: 42.

    Google Scholar 

  16. Reed, S. J. B., Electron microprobe analysis, 2nd ed., London, New York, Oakleigh: Cambridge University Press, 1993, 206.

    Google Scholar 

  17. Yang, J. L., Li, H. J., Yan, H. T. et al., Study on the spectroscopy of chlorophyll-rare earth, J. of Chinese Rare Earth Society (in Chinese), 1992, 10: 86.

    CAS  Google Scholar 

  18. Cheng, Y., Chen, B. W., Lu, J. F. et al., The reaction of lanthanide ions with n-doxyl stearic acids and its utilization for the ESR study on the permeability of lipid-bilayer of erythrocyte membrane to gadolinium ions, Inorganic Biochemistry, 1998, 69: 1.

    Article  PubMed  CAS  Google Scholar 

  19. Tytgat, J., Daenens, P., Effect of lanthanum on voltage-dependent gating of a cloned mammalian cloned neuronal potassium channel. Brain Research, 1997, 749(2): 232.

    Article  PubMed  CAS  Google Scholar 

  20. Lansman, J. B., Blockade of current through single calcium channels by trivalent lanthanide cations, Effect of ionic radius on the rates of ion entry and exit, J. Gen. Physiol., 1990, 95: 679.

    Article  PubMed  CAS  Google Scholar 

  21. Wolken, J. J.,Euglena: An Experimental Organism for Biochemical and Biophysical Studies, Appleton: Appleton-Century-Crofts, 1967.

    Google Scholar 

  22. Miller, R. J., Multiple calcium channels and neuronal function, Science, 1987, 235: 46.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kang, L., Shen, Z. & Jin, C. Neodymium cations Nd3+ were transported to the interior ofEuglena gracilis 277. Chin.Sci.Bull. 45, 585–592 (2000). https://doi.org/10.1007/BF02886032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02886032

Keywords

Navigation