Skip to main content
Log in

The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Lanthanides (La, Gd, Nd, Ce) accumulated in the green alga Desmodesmus quadricauda but their intracellular localizations were distinctly different: lanthanum and gadolinium were localized in cytoplasm, while neodymium and cerium were in the chloroplast. The effect of lanthanum and neodymium, as representatives of these two groups, on growth, chlorophyll content and photosynthetic rate at different light intensities was studied. At the lowest light intensity used (50 µmol photons m−2 s−1), in the presence of lanthanides (Nd), growth was enhanced by as much as 36 % over lanthanide free control, and the photosynthetic rate increased by up to 300 %. At high light intensities (238, 460, and 750 µmol photons m−2 s−1), photosynthetic rate increased markedly, but there was no significant difference between rates in the presence or absence of lanthanides. However, growth, measured as a percentage of dry weight, if compared with lanthanide free control, increased at all light intensities (31, 39, and 20 %, respectively). The total amount of chlorophyll after lanthanide treatment increased by up to 21 % relative to the control culture, mainly due to an increase in the level of chlorophyll b. Addition of lanthanides caused a change in the chlorophyll a/b ratio from 4.583 in control cultivation, to 1.05. Possible mechanisms of lanthanide-induced photosynthetic change, alterations in photosynthetic structures, and increases in growth are discussed and compared with findings in higher plants. The hypothesis that the lanthanide effect could be due to formation of lanthanide-pheophytins was not confirmed as lanthanide pheophytins were not found in D. quadricauda. Furthermore, we have shown that the preferential incorporation of heavy isotopes of magnesium, namely 25Mg and 26Mg, into chlorophyll during photosynthesis that occurred in controls was diminished in the presence of lanthanides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DW:

Dry weight

ESI:

Electrospray ionization

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-pressure liquid chromatography

HRMS:

High-resolution-mass spectrometry

ICP MS:

Inductively coupled plasma-mass spectrometry

LC-MS:

Liquid chromatography–mass spectrometry

MALDI-TOF-MS:

Matrix-assisted laser desorption/ionization time of flight mass spectrometry

NLS:

Neutral loss scan

PS I:

Photosystem I

PS II:

Photosystem II

REE:

Rare earth element

Rubisco:

Ribuloso-1,5-biphosphate carboxylase oxygenase

TIC:

Total ion current

References

  • Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Ann Rev Plant Physiol 37:93–136

    Article  CAS  Google Scholar 

  • Andresen E, Küpper H (2013) Cadmium toxicity in plants. In: Cadmium: from toxicity to essentiality. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences, vol 11. Springer Science + Business Media B.V, Dordrecht, pp 395–414

    Google Scholar 

  • Andresen E, Mattusch J, Wellenreuther G, Thomas G, Abad UA, Küpper H (2013) Different strategies of cadmium detoxification in the submerged macrophyte Ceratophyllum demersum L. Metallomics 5:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Bačkor M, Dzubaj A (2004) Short-term and chronic effects of copper, zinc and mercury on the chlorophyll content of four lichen photobionts and related alga. J Hattori Bot Lab 95:271–284

    Google Scholar 

  • Bjőrkman O, Boardman NK, Anderson JM, Thorne SW, Goodchild DJ, Pyliotis N (1972) Effect of light intensity on the capacity of photosynthetic reactions, chloroplasts components and structure. Carnegie Inst Wash Year Book 71:85–94

    Google Scholar 

  • Black JR, Yin Q-Z, Rustad JR, H Casey WH, (2007) Magnesium isotopic equilibrium in chlorophylls. J Am Chem Soc 129:8690–8691

    Article  CAS  PubMed  Google Scholar 

  • Black JR, Epstein E, Rains WD, Yin Q-Z, Casey WH (2008) Magnesium-isotope fractionation during plant growth. Environ Sci Technol 42:7831–7836

    Article  CAS  PubMed  Google Scholar 

  • Bolou-Bi EB, Poszwa A, Leyval C, Vigier N (2010) Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim Cosmochim Acta 74:2523–2537

    Article  CAS  Google Scholar 

  • Canjura FL, Schwartz SJ (1991) Separation of chlorophyll compounds and their polar derivatives by high-performance liquid chromatgraphy. J Agric Food Chem 39:1102–1105

    Article  CAS  Google Scholar 

  • Chen WJ, Tao Y, Gu YH, Zha GW (2001) Effect of lanthanide chloride on photosynthesis and dry matter accumulation in tobacco seedlings. Biol Trace Elem Res 79:169–176

    Article  CAS  PubMed  Google Scholar 

  • Crotty D, Silkstone G, Poddar S, Ranson R, Prina-Mello A, Wilson MT, Coey JM (2012) Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase. Proc Natl Acad Sci USA 109:1437–1442

    Article  CAS  PubMed  Google Scholar 

  • Emmanuel ESC, Anandkumar B, Natesan M, Maruthamuthu S (2010) Efficacy of rare earth elements on the physiological and biochemical characteristics of Zea mays L. Aust J Crop Sci 4:289–294

    Google Scholar 

  • Gevaert F, Rees TAV (2015) Total chlorophyll and nitrogen storage in the green alga Ulva pseudolinza. Cah Biol Mar 56:313–318

    Google Scholar 

  • Goecke F, Jerez C, Zachleder V, Figueroa FL, Bišová K, Řezanka T, Vítová M (2015) Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Front Microbiol 6:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenther JE, Nemson JA, Melis A (1988) Photosystem stoichiometry and chlorophyll antenna size in Dunaliella salina (green algae). Biochim Biophys Acta 934:108–117

    Article  CAS  Google Scholar 

  • Hong FS, Wei ZG, Tao Y, Wan SK, Yang YT, Cao XD, Zhao GW (1999) Distribution of rare earth elements and structure characterization of chlorophyll-lanthanum in a natural plant fern Dicranopteris dichotoma. Acta Bot Sin 41:851–854

    CAS  Google Scholar 

  • Hong F, Wei Z, Zhao G (2002) Mechanism of lanthanum effect on chlorophyll of spinach. Sci China C Life Sci 45:166–176

    Article  CAS  PubMed  Google Scholar 

  • Hu ZH, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220

    Article  CAS  Google Scholar 

  • Hu B, Lai YH, So PK, Chen H, Yao ZP (2012) Direct ionization of biological tissue for mass spectrometric analysis. Analyst 137:3613–3619

    Article  CAS  PubMed  Google Scholar 

  • Jordan DB, Ogren VL (1981) Species variation in the specificity in ribulose-1,5-biphosphate oxygenase activity. Nature 291:513–515

    Article  CAS  Google Scholar 

  • Kao TH, Chen CJ, Chen BH (2011) An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz. Talanta 86:349–355

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Küpper FC, Spiller M (2006) Heavy metal—chlorophylls formed in vivo during heavy metal stress and degradation products formed during digestion, extraction and storage of plant material. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, The Netherlands, pp 67–77

    Chapter  Google Scholar 

  • Lafeuille JL, Lefevre S, Lebuhotel J (2014) Quantitation of chlorophylls and 22 of their colored degradation products in culinary aromatic herbs by HPLC-DAD-MS and correlation with color changes during the dehydration process. J Agric Food Chem 62:1926–1935

    Article  CAS  PubMed  Google Scholar 

  • Laszló S, Fodor M, Pais I (2001) Effects of zirconium on the growth and photosynthetic pigment composition of Chlorella pyrenoidosa green algae. J Plant Nutr 24:159–174

    Article  Google Scholar 

  • Leitenmaier B, Küpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4:132

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Tevini M, Lichtenthaler HK (eds) Methods in Enzymology, vol 148. Elsevier Inc., Philadelphia, pp 350–382

    Google Scholar 

  • Liu M, Hasenstein KH (2005) La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L. Planta 220:658–666

    Article  CAS  PubMed  Google Scholar 

  • Liu C et al (2006a) Effect of Nd3+ ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach. Biochem Biophys Res Commun 342:36–43

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang J, Yang J, Fan Y, Wu Y, Zhang H (2006b) Application of rare earth phosphate fertilizer in western area of China. J Rare Earths 24:423–426

    Google Scholar 

  • Lukavský J, Simmer J, Kubín Š (1979) Methods for algal growth evaluation. In: Marvan P, Přibil S, Lhotský O (eds) Algal essays and monitoring eutrophication. E. Schweitzerbartsche Verlags-buchhandlung, Stuttgart, pp 77–85

    Google Scholar 

  • MacKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Maina JN, Wang Q (2015) Seasonal response of chlorophyll a/b ratio to stress in a typical desert species: Haloxylon ammodendron. Arid Land Res Manag 29:321–334

    Article  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    Article  CAS  Google Scholar 

  • Melis A, Harvey GW (1981) Regulation of photosystem stoichiometry and relation to chloroplast b content and relation to chloroplast ultrastructure. Biochim Biophys Acta 637:138–145

    Article  CAS  Google Scholar 

  • Melis A, Murakami A, Nemson JA, Aizawa K, Ohki K, Fujita Y (1996) Chromatic regulation in Chlamydomonas reinhardtii alters photosystem stoichiometry and improves the quantum efficiency of photosynthesis. Photosynth Res 47:253–265

    Article  CAS  PubMed  Google Scholar 

  • Mishra JS, Wellenreuther G, Mattusch J, Stärk HJ, Küpper H (2013) Speciation and distribution of arsenic in the non-hyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol 163:1396–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami A, Fujita Y, Nemson JA, Melis A (1997) Chromatic regulation in Chlamydomonas reinhardtii: time course of photosystem stoichiometry adjustment following a shift in growth light quality. Plant Cell Physiol 38:188–193

    Article  CAS  Google Scholar 

  • Omar HH (2002) Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Intern Biodeter Biodegr 50:95–100

    Article  CAS  Google Scholar 

  • Ra K, Kitagawa H (2007) Magnesium isotope analysis of different chlorophyll forms in marine phytoplankton using multi-collector ICP-MS. J Anal Atom Spectrom 22:817–821

    Article  CAS  Google Scholar 

  • Ren QG, Hua Y, Shen H, Zhong L, Jin CZ, Mi Y, Yao HY, Xie YN, Wei SQ, Zhou LW (2007) Cytochemical behavior of rare earth ions in Euglena gracilis studied by XAFS. J Radioanal Nucl Chem 272:359–362

    Article  CAS  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Balzaretti V, del Carmen Rios de Molina M (2012) Chromium induced stress conditions in heterotrophic and auxotrophic strains of Euglena gracilis. Ecotoxicol Environ Saf 84:147–154

    Article  CAS  PubMed  Google Scholar 

  • Thomas G, Stärk HJ, Wellenreuther G, Dickinson BC, Küpper H (2013) Effects of nanomolar copper on water plants—comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions. Aquat Toxicol 140–141:27–36

    Article  PubMed  Google Scholar 

  • Wang QQ, Lai Y, Yang LM, Huang BL (2001) Preliminary study of existing species of lanthanum in the spinach leaves after being cultivated with a culture solution containing lanthanum. Anal Sci 17:789–791

    Article  CAS  PubMed  Google Scholar 

  • Wang XP, Shan XQ, Zhang SZ, Wen B (2003) Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma. Anal Bioanal Chem 376:913–917

    Article  CAS  PubMed  Google Scholar 

  • Wang L-F, Ji H-B, Bai K-Z, Li L-B, Kuang T-Y (2005) Photosynthetic characterization of the plant Dicranopteris dichotoma Bernh. in a rare earth elements mine. J Integr Plant Biol Acta Bot Sin 47:1092–1100

    Article  CAS  Google Scholar 

  • Wei J-Z, Zhou X-B (2000) Effect of neodymium on physiological activities in oilseed rape during calcium starvation. J Rare Earths 18:57–61

    Google Scholar 

  • Wei Z, Hong F, Yin M, Li H, Hu F, Zhao G, WoonchungWong J (2005) Subcellular and molecular localization of rare earth elements and structural characterization of yttrium bound chlorophyll a in naturally grown fern Dicranopteris dichotoma. Microchem J 80:1–8

    Article  CAS  Google Scholar 

  • Wiederhold JG (2015) Metal stable isotope signatures as tracers in environmental geochemistry. Environ Sci Technol 49:2606–2624

    Article  CAS  PubMed  Google Scholar 

  • Zeng FL, An Y, Ren L, Deng RW, Zhang MF (2000) Effects of lanthanum and calcium on photoelectron transport activity and the related protein complexes in chloroplast of cucumber leaves. Biol Trace Elem Res 77:83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project LO1201 and LO1416 obtained through financial support of the Ministry of Education, Youth and Sports in the targeted framework of the National Programme for Sustainability, by the Grant Agency of the Czech Republic P 503 14–00227S and Institutional Research Concept RVO61388971.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milada Vítová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All the authors agree with the submission of the manuscript to Photosynthesis Research. The research does not involve any human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Řezanka, T., Kaineder, K., Mezricky, D. et al. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda . Photosynth Res 130, 335–346 (2016). https://doi.org/10.1007/s11120-016-0263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0263-9

Keywords

Navigation