Skip to main content
Log in

Prokaryotic character of chloroplasts and mitochondria — the present knowledge

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

When reconstructing the process of evolution we do not depend only on paleontological data. Due to the progress in molecular biology, it is possible to obtain more reliable information by the analysis of essential macromoleeules. The most important information comes from studies of the genes and their products that are universally distributed, functionally equivalent and conservative and that can be thus considered as reliable phylogenetic markers. The organization of chloroplast and mitochondrial genomes, and the comparative analysis of highly conservative macromolecules in particular (e.g. primary and secondary structure of rRNA and tRNA) yield a basis substantiating the prokaryotic origin of semiautonomous organelles of eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ctDNA:

ohloroplast DNA

mtDNA:

mitochondrial DNA

rDNA:

genes for rRNA

mRNA:

messenger KNA

rRNA:

ribosomal RNA

ct-rRNA:

chloroplast rRNA

mt-rRNA:

mitoohondrial rRNA

tRNA:

transfer RNA

ct-tRNA:

chloroplast tRNA

mt-tRNA:

mitochondrial tRNA

References

  • Abelson J.: RNA processing and the intervening sequence problem.Ann.Rev.Biochem.48, 1035 to 1069 (1979).

    Google Scholar 

  • Aitken A., Rouviere-Yaniv J.: Amino and carboxy terminal sequences of the DNA-binding protein HU from the cyanobacteriumSynechocystis PCC-6701 (ATCC-27170).Biochem.Biophys.Res.Commun.91, 461–467 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Akazawa T., Takabe T., Kobayashi H.: Molecular evolution of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO).TIBS9, 380–383 (1984).

    CAS  Google Scholar 

  • Albring M., Griffith J., Attardi G.: Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication.Proc.Nat.Acad. Sci.74, 1348–1352 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H.L., Coulson A.R., Drouin, J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J.H., Staden R., Yoüng I.G.: Sequence and organization of the human mitochondrial genome.Nature290, 457–465 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Anderson S., de Bruijn M.H.L., Coulson A.R., Eperon I.C., Sanger F., Young I.G.: Complete sequence of bovine mitochondrial DNA. Conserve features of the mammalian mitochondrial genome.J.Mol.Biol.136, 683–717 (1982).

    Article  Google Scholar 

  • Araya A., Amthaver R., Leon G., Krauskop M.: Cloning, physical mapping and genome organization of mitochondrial DNA fromCyprinus carpio oocytes.Mol.Gen.Genet.196, 43–52 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Attardi G., Cantatore P., Ching E., Crews S., Gelfand R., Merkel C., Montoya J., Ojala D.: The remarkable features of gene organization and expression of human mitochondrial DNA, pp. 103–119 inA.M. Kroon, C. Saccone (Eds.):The Organization and Expression of the Mitochondrial Genome. Elsevier/North Holland Biomedical Press, Amsterdam 1980.

    Google Scholar 

  • Avise J.C., Lansman R.A.: Polymorphism of mitochondrial DNA in populations of higher animals, pp. 147–164 inM. Nei, R.K. Koehn (Eds.):Evolution of Genes and Proteins. Sinauer Associated Inc., Sunderland, Massachusetts 1983.

    Google Scholar 

  • Barton N., Jones J.S.: Mitochondrial DNA: new clues about evolution.Nature306, 317–318 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Baltimore D.: Retroviruses and retrotransposons. The role of reverse transcription in shaping the eukaryotic genome.Cell40, 481–482 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Belfort M., Pedelsen-Lane J., West D., Ehrenman K., Maley G., Chu F., Maley F.: Proessing of the intron-containing thymidylate synthase (td) gene of phage T4 is at the RNA level. Cell41, 375–382 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Bennoun P.: Does the chloroplast control mitochondrial functions?FEBS Lett.136, 1–2 (1981).

    Article  CAS  Google Scholar 

  • Bernardi G.: The origin of replication of the mitochondrial genome of yeast.TIBS7, 404–408 (1982).

    CAS  Google Scholar 

  • Bibb M.J., Van Etten R.A., Wright C.T., Walberg M.W., Clayton D.A.: Sequence and gene organization of mouse mitochondrial DNA.Cell26, 167–180 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Birky C.W. Jr.,Maruyama T., Fuerst R.: An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results.Genetics103, 513–527 (1983).

    PubMed  Google Scholar 

  • Bogorad L., Krebbers E.T., Larrinua I.M., Muskavitch K.M.T., Rodermel S.T., Steinmetz A.A., Subramanian A.: The structure of maize plastid genes and their transcriptionin vitro, pp. 63–79 inAdvances in Gene Technology: Molecular Genetics of Plants and Animals. Academic Press, New York 1983.

    Google Scholar 

  • Bohnert H.J., Gordon K.H.J., Grouse E.J.: Homologies among ribosomal RNA and messenger RNA genes in chloroplasts, mitochondria andEscherichia coli.Mol.Gen.Genet.179, 539–545 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Bohnert H.J., Crouse E.J., Schmitt J.M.: Organization and expression of plastid genomes, pp. 475–530 inB. Parthier, D. Boulter (Eds.):Encyclopaedia of Plant Physiology, N.S., Vol. 14B: Nucleic Acids and Proteins in Plants. II. Springer-Verlag, Berlin-Heidelberg-New York 1982.

    Google Scholar 

  • Bonen L., Doolittle W.F., Fox G.E.: Cyanobacterial evolution: results of 16S ribosomal ribonucleic acid sequence analyses.Can.J.Biochem.57, 879–888 (1979).

    PubMed  CAS  Google Scholar 

  • Bonen L., Gray M.W.: Organization and expression of the mitochondria genome of plants. I. Genes for wheat mitochondrial, ribosomal and transfer RNA: evidence for an unusual arrangement.Nucleic Acids Res.8, 319–335 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Borst P., Grivell L.A.: One gene’s intron is another gene’s exon.Nature289, 439–440 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Borst P., Grivell L.A., Groot G.S.P.: Organelle DNA.TIBS9, 128–130 (1984).

    Google Scholar 

  • Boutry M., Briquet M., Goffeau A.: The alpha subunit of a plant mitochondrial F1 ATPase is translated in mitochondria.J.Biol.Chem.258, 8524–8526 (1983).

    PubMed  CAS  Google Scholar 

  • Branlant C., Krol A., Machatt M.A., Pouyet J., Ebel J., Edwards K., Kössel H.: Primary and secondary structures ofEscherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs.Nucleic Acids Res.9, 4303–4324 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Breathnach R., Benoist C., O’Hare K., Gannon F., Chambon P.: Ovalbumin gene — evidence for a leader sequence in messenger RNA and DNA sequences at exon-intron boundaries.Proc.Nat.Acad.Sci.75, 4853–4857 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Brennicke A., Möller S., Blanz P.A.: The 18S and 5S ribosomal RNA genes inOenothera mitochondria: Sequence rearrangements in the 18S and 5S rRNA genes of higher plants.Mol. Gen.Genet.198, 404–410 (1985).

    Article  CAS  Google Scholar 

  • Briat J.F., Letoffe S., Mache R., Rouviere-Yaniv J.: Similarity between the bacterial histonelike protein HU and a protein from spinach chloroplasts.FEBS Lett.172, 75–79 (1984).

    Article  CAS  Google Scholar 

  • Broach J.R.: The yeast plasmid 2-μ circle.Cell28, 203–204 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Brown R.H., Rigsby L.L., Akin D.E.: Enclosure of mitochondria by chloroplasts.Plant Physiol.71, 437–439 (1983).

    Article  PubMed  Google Scholar 

  • Brown W.M.: Evolution of animal mitochondrial DNA, pp. 62–88 inM. Nei, R.K. Koehn (Eds.):Evolution of Genes and Proteins.Sinauer Associates Inc., Sunderland, Massachusetts 1983.

    Google Scholar 

  • Brown W.M., George M., Jr.,Wilson A.C.: Rapid evolution of animal mitochondrial DNA.Proc.Nat.Acad.Sci.76, 1967–1971 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Brown W.M., Prager E.M., Wilson A.C.: Mitochondrial DNA sequences of primates: tempo and mode of evolution.J.Mol.Evol.18, 225–239 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Butow R.A., Perlman P.S., Grossman L.I.: The unusualvar1 gene of yeast mitochondrial DNA.Science228, 1496–1501 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Caron F., Jacq G., Rouviere-Yaniv J.: Characterization of a histone-like protein extracted from yeast mitochondria.Proc.Nat.Acad.Sci.76, 4265–4269 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T.: Nuclear volume control by nucleoskeletal DNA, selection for cell-vollume and cell-growth rate, and solution of DNA cell-value paradox.J.Cell Sci.34, 247–278 (1978).

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T.: Selfish DNA and the origins of introns.Nature315, 283–284 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Cech T.R., Tanner N.K., Tinoco I. Jr.,Weir B.R., Zuker M., Perlman P.S.: Secondary structure of theTetrahymena ribosomal RNA intervening sequences.Proc.Nat.Acad.Sci.80, 3903–3907 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Cech T.R.: Self-splicing RNA: Implications for evolution.Int.Rev.Cytol.93, 3–22 (1985).

    PubMed  CAS  Google Scholar 

  • Chao S., Sederoff R., Levings Ch.S. III.: Nucleotide sequence and evolution of the 18S ribosomal RNA gene in maize mitochondria.Nucleic Acids Res.12, 6629–6644 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Clark C.G., Tague B.W., Ware V.C., Garbi S.A.:Xenopus laevis 28S ribosomal RNA: A secondary structure model and its evolutionary and functional implications.Nucleic Acids Res.12, 6197–622 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Clark-Walker G.D., Sriprakash K.S.: Map location of transcripts fromTorvlonsis glabrata mitochondrial DNA.EMBO J.2, 1465–1472 (1983).

    PubMed  CAS  Google Scholar 

  • Clark-Walker G.D., McArthur C.R., Sriprakash K.S.: Order and orientation of genetic sequences in circular mitochondrial DNA fromSaccharomyces exiquus: Implications for evolution of yeast mtDNAs.J.Mol.Evol.19, 333–341 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Clary D.O., Wolstenholme D.R.: A cluster of six tRNA genes inDrosophila mitochondrial DNA that includes a gene for an unusual tRNA Ser/AGY.Nucleic Acids Res.12, 2367 to 2379 (1984).

    Google Scholar 

  • Clary D.O., Wolstenholme D.R.: The mitochondrial DNA molecule ofDrosophila yacuba: Nucleotide sequence, gene organization, and genetic code.J.Mol.Evol.22, 252–271 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Crews S., Attardi G.: The sequences of the small ribosomal RNA gone and the phenylalanine tRNA gone are joined end to end in human mitochondrial DNA.Cell19, 775–784 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Crick F.H.C.: Codon-anticodon pairing: the wobble hypothesis.J.Mol.Biol.19, 548–555 (1966).

    PubMed  CAS  Google Scholar 

  • Curtis S.E., Clegg M.T.: Molecular evolution of chloroplast DNA sequences.Mol.Biol.Evol.1, 291–301 (1984).

    PubMed  CAS  Google Scholar 

  • Dole R.M.K., Mendu N., Ginsburg H., Keidl J.C.: Sequence analysis of the maize mitochondrial 26S rRNA gene and flanking regions.Plasmid11, 141–150 (1984).

    Article  Google Scholar 

  • Daniels Ch.J., Gupta R., Doolittle W.E.: Transcription and excission of a large intron in the tRNATrp gene of an archaebacterium,Halobacterivm volcanii.J.Biol.Chem.260, 3132–3134 (1985).

    PubMed  CAS  Google Scholar 

  • Darnell J.E. Jr.: Implications of RNA: RNA splicing in evolution of eukaryotic cells.Science202, 1257–1260 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Davies R.W., Waring R.B., Ray J.A., Brown T.A., Scazzocchio C.: Making ends meet: a model for RNA splicing in fungal mitochondria.Nature300, 719–724 (1982).

    Article  PubMed  CAS  Google Scholar 

  • de Bruijn, M.H.L., Schreier P.H., Eperon I.C., Barrell B.G., Chen E.Y., Amstrong P.W., Wong J.F.H., Roe B.A.: A mammalian mitochondrial serine transfer RNA lacking the “dihydrouridine” loop and stern.Nucleic Acids Res.8, 5213–5222 (1980).

    Article  PubMed  Google Scholar 

  • de Bruijn M.H.L.:Drosophila melanogaster mitochondrial DNA: a novel organization and genetic code.Nature304, 234–241 (1983).

    Article  PubMed  Google Scholar 

  • Delihas N., Andersen J.: Generalized structures of the 5S ribosomal RNAs.Nucleic Acids Res.10, 7323–7344 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Delihas N., Anderses J., Sprouse H.M., Dudock B.: The nucleotide sequence of the chloroplast 5S ribosomal RNA from spinach.Nucleic Acids Res.9, 2801–2805 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Delihas N., Andresini W., Andersen J., Berns D.: Structural features unique to the 5S ribosomal RNAs of the thermophilic cyanobacteriumSynechococcus lividus III and the green plant chloroplasts.J.Mol.Biol.162, 721–727 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Delihas N., Andersen J., Berns D.: Phylogeny of the 5S ribosomal RNA fromSynechococcus lividus II: The cyanobacterial/chloroplast 5S RNAs form a common structural class.J. Mol. Evol.21, 334–337 (1985).

    Article  CAS  Google Scholar 

  • Deno H., Kato A., Shinozaki K., Sugiura M.: Nucleotide sequences of tobacco chloroplast genes for elongator tRNAMet and tRNAVal (UAC) the tRNAVal (UAC) gene contains a long intron.Nucleic Acids Res.10, 7511–7520 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Dewey R.E., Schuster A.M., Levings C.S. III,Timothy O.H.: Nucleotide sequence of F0-ATPase proteolipid (subunit 9) gene of maize mitochondria.Proc.Nat.Acad.Sci.82, 1015–1019 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Dohme F., Nierhaus K.H.: Role of 5S RNA in assembly and function of 50S subunit fromEscherichia coli.Proc.Nat.Acad.Sci.73, 2221–2225 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Doolittle W.F.: Genes in pieces: were they ever together?Nature272, 581–582 (1978).

    Article  Google Scholar 

  • Dorne A.M., Eneas-Filho J., Heizmann P., Mache R.: Comparison of ribosomal proteins of chloroplast from spinach and ofEscherichia coli.Mol.Gen.Genet.193, 129–134 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Douglas S.E., Doolittle W.F.: Complete nucleotide sequence of the 23S rRNA gene of the cyanobacterium,Anacystis nidulans.Nucleic Acids Res.13, 3373–3386 (1984).

    Article  Google Scholar 

  • Dron M., Hartmann C., Rode A., Sevignac M.: Gene conversion as a mechanism for divergence of a chloroplast tRNA gene inserted in the mitochondrial genome ofBrassica oleacea.Nucleic Acids Res.13, 8603–8610 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Dujon B.: Sequence of the intron and flanking exons of the mitochondrial 21S ribosomal RNA gene of yeast strains having different alleles at the omega loci andRIB-1 loci.Cell20, 185–197 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Ebringer L.: Erythromyein and streptomycin like antibiotics as bleaching factors forEuglena gracilis.Naturwiss.14, 334–335 (1962).

    Article  Google Scholar 

  • Ebringer L.: Macrolide antibiotics as bleaching factors forEuglena gracilis.Naturwiss.52, 666 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Ebringer L.: Are plastids derived from prokaryotic micro-organisms? Action of antibiotics onEuglena gracilis.J.Gen.Microbiol.71, 35–52 (1972).

    PubMed  CAS  Google Scholar 

  • Ebringer L.: Multiplied endosymbiosis as a basis of present forms of eukaryotic cells, pp. 5–19 inL. Ebringer (Ed.):Evolution and Function of Cell Organelles. (In Slovak) Biological Society of Slovak Academy of Sciences and Socialistic Academy of Slovak Socialist Republik, Bratislava 1975.

    Google Scholar 

  • Ebringer L.: Present views on the prokaryotic origin of some cell organelles. (In Slovak)Biologické listy (Prague)42, 275–295 (1976).

    Google Scholar 

  • Ebringer L.: Effects of drugs on chloroplasts, pp. 271–354 inP.E. Hahn (Ed.):Progress in Molecular and Subcellular Biology, Vol. 6. Springer-Verlag, Berlin-Heidelberg-New York 1978.

    Google Scholar 

  • Ebringer L.: Were chloroplast and mitochondria free living microorganisms? Sensitivity of these organelles to xenobiotics, pp. 184–199 inM. Macháček (Ed.):Science and Humanity1984. (In Slovak) Horizont, Prague 1983.

    Google Scholar 

  • Ebringer L., Krajčovič J.: Are chloroplasts and mitochondria the remnants of prokaryotic endosymbionts ?Folia Microbiol.31, 228–254 (1986).

    CAS  Google Scholar 

  • Eigen M., Lindemann B., Winkler-Oswatitsch R., Clarke C.H.: Pattern analysis of 5S rRNA.Proc.Nat.Acnd.Sci.82, 2437–2441 (1985).

    Article  CAS  Google Scholar 

  • El-Gewely M.R., Helling R.B., Dibbits J.G.Th.: Sequence and evolution of the regions between therrn operons in the chloroplast genome ofEuglena gracilis bacillaris.Mol.Gen.Genet.194 432–443 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Ellis J.: Promiscuous DNA — chloroplast genes inside plant mitochondria.Nature299, 678–679 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Ellis R.J., Hartley M.R.: Nucleic acids of chloroplasts, inV. Burton (Ed.):Biochemistry of Nucleic Acids. Butterworth and University Park Press, London 1974.

    Google Scholar 

  • Eperon I.C., Anderson S., Nierlich D.P.: Distinctive sequence of human mitochondrial ribosomal RNA gene.Nature286, 460–467 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Erdei S., Boros I., Szabó G., Venetianer P.: A novel type of bacterial transcription unit, specifying mRNA, rRNA, and tRNA.Mol.Gen.Genet.191, 162–164 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Flavell A.: Introns continue to amaze.Nature316, 574–575 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Fox T.D.: Five TGA stop codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome-c oxidase subunit II.Proc.Nat.Acad.Sci.76, 6534–6538 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Gargouri A., Lazowska J., Slonimski P.P.: DNA splicing of introns: a general way of reverting intron mutations, pp. 259–268 inR.J. Schweyen, K. Wolf, F. Kaudewitz (Eds.):Mitochondria 983: Nucleo-Mitochondrial Interactions. W. de Gruyter, Berlin 1983.

    Google Scholar 

  • Garriga G., Lambowitz A.M.: RNA splicing inNeurospora mitochondria: self-splicing of a mitochondrial intronin vitro.Cell39, 631–641 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Gauss D.H., Sprinzl M.: Compilation of tRNA sequences.Nucleic Acids Res.12 (suppl.), r1-r131 (1984).

    Article  PubMed  Google Scholar 

  • Gibbs S.P.: The chloroplastsof Euglena may have evolved from symbiotic green algae.Can.J.Bot.56, 2883–2889 (1978).

    Google Scholar 

  • Gilbert W.: Genes in pieces revisited.Science228, 823–824 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Gillham N.W.:Organelle Heredity. Raven Press, New York 1978.

    Google Scholar 

  • Ginrich J.C., Hallick R.B.: TheEuglena gracilis chloroplast ribulose-1,5-bisphosphate carboxylase gene. I. Complete DNA sequence and analysis of the nine intervening sequences.J.Biol. Chem.260, 16156–16161 (1985).

    Google Scholar 

  • Ginsburg D., Steitz J. A.: 30S ribosomal precursor RNA fromEscherichia coli. Primary transcript containing 23S sequences, 16S sequences, and 5S sequences.J.Biol.Chem.250, 5647–5654 (1975).

    PubMed  CAS  Google Scholar 

  • Goldbach R.W., Bollen-DeBoer J.E., Van Bruggen E.F.J., Borst P.: Replication of the linear mitochondrial DNA ofTetrahymena pyriformis.Biochim.Biophys.Acta562, 400–417 (1979).

    PubMed  CAS  Google Scholar 

  • Goodfellow P.: Mitochondria and the major histocompatibility complex.Nature306, 539–540 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Graf L., Roux E., Stutz E.: Nucleotide sequence of aEuglena gracilis ehloroplast gone coding for thy 16S rRNA: homologios toEscherichia coli andZea mays chloroplast 16S rRNA.Nucleic Acids Res.10, 6369–6381 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Gray M.W.: Mitochondrial genome diversity and the evolution of mitochondrial DNA.Can. J.Biochem.60, 157–171 (1982).

    PubMed  CAS  Google Scholar 

  • Gray M.W.: The bacterial ancestry of plastids and mitochondria.Bioscience33, 693–699 (1983).

    Article  CAS  Google Scholar 

  • Gray M.W., Doolittle W.F.: Has the endosymbiont hypothesis been proven?Microbial.Rev.46, 1–42 (1982).

    CAS  Google Scholar 

  • Gray M.W., Spencer D.F.: Wheat mitochondrial DNA encodes an eubacteria like initiator methionme transfer RNA.FEBS Lett.161, 323–327 (1983).

    Article  CAS  Google Scholar 

  • Gray M.W., Sankoff D., Cedergren R.J.: On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA.Nucleic Acids Res.12, 5837–5852 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Greenberg B.M., Gruissem W., Hallick R.B.: Accurate processing and pseudouridylation of chloroplast transfer RNA in a chloroplast transcription system.Plant Molec.Biol.3, 97–109 (1984).

    Article  CAS  Google Scholar 

  • Grivell L.A., Borst P.: Mitochondrial mosaics. Maturases on the move.Nature298, 703–704 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Gross S.R., Hsieh T.S., Levine P.H.: Intramolecular recombination as a source of mitochondrial chromosome heteromorphism inNeurospora.Cell38, 233–239 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Grossman L.I., Watson R., Vinograd J.: Presence of ribonucleotides in mature closed circular mitochondrial DNA.Proc.Nat.Acad.Sci.70, 3339–3346 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Hagenbüchle O., Santer M., Steitz J.A., Mans R.J.: Conservation of the primary structure at the 3′ end of 18S rRNA from eukaryotic cells.Cell13, 551–563 (1978).

    Article  PubMed  Google Scholar 

  • Hasegawa M., Iida Y., Yano T., Takaiwa F., Iwabuchi M.: Phylogenetic relationships among eukaryotic kingdoms inferred from ribosomal RNA sequences.J. Mol.Evol.22, 32–38 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Heizmann P., Doly J., Hussein Y., Nicolas P., Nigon V., Blrnardi G.: The chloroplast genome of bleached mutants ofEuglena gracilis.Biochim.Biophys.Acta653, 412–415 (1981).

    PubMed  CAS  Google Scholar 

  • Hensgens J.A.M., Grivell L.A., Borst P., Bos J.L.: Nucleotide sequence of the mitochondrial gene for subunit 9 of yeast ATPase complex.Proc.Nat.Acad.Sci.76, 1663–1667 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Hensgens L.A.M., Arnberg A.C., Roosendaal E., Van der Horst G., Van der Veen R., van Ommen G.J.B.: Variation, transcription and circular RNAs of the mitochondrial gene for subunit I of cytochrome-c oxidase.J.Mol.Biol.164, 35–58 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Herrmann R.G., Bohnert H.J., Kowallik K.V.: Arrangement of circular DNA in chloroplasts.Hoppe-Seyl.Zeitschr.Physiol.Chem.355, 1205–1211 (1974).

    Google Scholar 

  • Hickey D.A., Benkel B.F.: Splicing and the evolution of introns.Nature316, 582 (1985).

    Article  Google Scholar 

  • Hixson J.E., Brown W.M.: A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications.Mol.Biol.Evol.3, 1–18 (1986).

    PubMed  CAS  Google Scholar 

  • Hudspeth M.E.S., Shumard D.S., Bradford C.J.R., Grossman L.I.: Organization ofAchlya mtDNA: A population with two orientations and a large inverted repeat containing the rRNA genes.Proc.Nat.Acad.Sci.80, 142–143 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Iams K.P., Sinclair J.H.: Mapping the mitochondrial DNA ofZea mays: Ribosomal gene location.Proc.Nat.Acad.Sci.79, 5926–5929 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Jacquier A., Dujon B.: An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene.Cell41, 383–394 (1985).

    Article  PubMed  CAS  Google Scholar 

  • John P., Whatley F.R.:Paracoccus denitrificans and the evolutionary origin of the mitochondrion.Nature254, 495–498 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Jope C.A., Hirai A., Wildman S.G.: Evidence that the amount of chloroplast DNA exceeds that of nuclear DNA in mature leaves.J. Cell Biol.79, 631–636 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Kaine B.P., Gupta R., Woese C.R.: Putative introns in tRNA genes of prokaryotes.Proc.Nat. Acad.Sci.80, 3309–3312 (1985).

    Article  Google Scholar 

  • Karabin G.D., Hallick R.B.:Euglena gracilis chloroplast transfer RNA transcription units. Nucleotide sequence analysis of a tRNAThr-tRNAGly-tRNAMet-tRNASer-tRNAGln gene cluster.J.Biol.Chem.258, 5512–5518 (1983).

    PubMed  CAS  Google Scholar 

  • Kearsey S.E., Craig I.W.: Altered ribosomal RNA genes in mitochondria from mammalian cells with ehloramphenicol resistance.Nature290, 607–608 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Keller M., Michel F.: The introns of theEuglena gracilis chloroplast gene which codes for the 32-kDa protein of photosystem II. Evidence for structural homologies with class II introns.FEBS Lett.179, 69–73 (1985).

    Article  CAS  Google Scholar 

  • Kenerley M.E., Morgan E.A., Post L., Lindahl L., Nomura M.: Characterization of hybrid plasmids carrying individual ribosomal ribonucleic acid transcriptions units ofEscherichia coli.J.Bacteriol.132, 931–949 (1977).

    PubMed  CAS  Google Scholar 

  • Keus R.J.A., Dekker A.F., van Roon M.A., Groot G.S.P.: The nucleotide sequence of the regions flanking the genes coding for 23S, 16S and 4.5S ribosomal RNA on chloroplast DNA fromSpirodela oligorhiza.Nucleic Acids Res.11, 6465–6474 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Keus R.J.A., Stam N.J., Zwiers T., de Heijn H.Th., Groot G.S.P.: The nucleotide sequence of the genes coding for tRNAArgUCU, tRNAArgACG and tRNAAsnGUU onSpirodela oligorhiza chloroplast DNA.Nucleic Acids Res.12, 5639–5646 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Kirk J.T.O.: Will the real chloroplast DNA please stand up?, pp. 267–276 inN.K. Boardman, A.W. Linnane, R.M. Smillie (Eds.):Autonomy and Biogenesis of Chloroplasts and Mitochondria. Elsevier/North-Holland, Amsterdam 1971.

    Google Scholar 

  • Koch W., Edwards K., Kossel H.: Sequencing of the 16–23S spacer in a ribosomal RNA operon ofZea mays chloroplast DNA reveals two split tRNAs.Cell25, 203–213 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Koller B., Delius H.: A chloroplast DNA ofEuglena gracilis with five complete rRNA operons and two extra 16S rRNA genes.Mol.Gen.Genet.188, 305–308 (1982).

    Article  CAS  Google Scholar 

  • Koller B., Delius H.: Intervening sequences in chloroplast genomes.Cell36, 613–622 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Koller B., Gingrich J.C., Stiegler G.L., Farley M.A., Delius H., Hallick R.B.: Nine introns with conserved boundary sequences in theEuglena gracilis chloroplast ribulose-1,5-bisphosphate carboxylase gene.Cell36, 545–553 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Kolodner R.D., Tewari K.K.: The molecular size and conformation of the chloroplast DNA from higher plants.Biochim.Biophys.Acta402, 372–390 (1975).

    PubMed  CAS  Google Scholar 

  • Kornberg A.:DNA Replication. W.H. Freeman, San Francisco 1980.

    Google Scholar 

  • Kováč L., Lazowska J., Slonimski P.P.: A yeast with linear molecules of mitochondrial DNA.Mol.Gen.Genet.197, 420–424 (1984).

    Article  PubMed  Google Scholar 

  • Krajčovič J., Ebringer L.: Molecular evolution of prokaryotes. (In Slovak)Biol. listy (Prague)51, 1–25 (1986).

    Google Scholar 

  • Krebbers E., Steinmetz A., Bogorad L.: DNA sequences for theZea mays tRNA genes tV-UAC and tS-UGA: tV-UAC contains a large intron.Plant Molec.Biol.3, 13–20 (1984).

    Article  CAS  Google Scholar 

  • Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., Cech T.R.: Self-splicing RNA: autoexcission and autocyclization of the ribosomal RNA intervening sequence ofTetrahymena.Cell31, 147–157 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Kung S.D.: Expression of chloroplast genomes in higher plants.Ann.Rev. Plant Physiol.28, 401–437 (1977).

    Article  CAS  Google Scholar 

  • Küntzel H., Köchel H.G.: Evolution of rRNA and origin of mitochondria.Nature293, 751–755 (1981).

    Article  PubMed  Google Scholar 

  • Kuroiwa T., Suzuki T., Ogawa K., Kawano S.: The chloroplast nucleus: distribution, number, size, and shape, and a model for the multiplication of the chloroplast genome during chloroplast development.Plant Cell Physiol.22, 381–396 (1981).

    Google Scholar 

  • Kusuda J., Shinozaki K., Takaiwa F., Sugiura M.: Characterization of the cloned ribosomal DNA of tobacco chloroplasts.Mol.Gen.Genet.178, 1–7 (1980).

    Article  CAS  Google Scholar 

  • Labouesse M., Slonimski P.P.: Construction of novel cytochromeb genes in yeast mitochondria by substraction or addition of introns.EMBO J.2, 269–276 (1983).

    PubMed  CAS  Google Scholar 

  • Lacoste-Royal G., Gibbs S.P.:Ochromonas mitochondria contain a specific chloroplast protein.Proc.Nat.Acad.Sci.82, 1456–1459 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Lake J.A., Henderson E., Oakes M., Clark M.W.: Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes.Proc.Nat.Acad.Sci.81, 3786–3790 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Lazowska J., Jacq C., Slonimski P.P.: Sequence of introns and flanking exons in wild-type andbox2 mutants of cytochromeb reveals an interloced splicing protein coded by an intron.Cell22, 33–348 (1980).

    Article  Google Scholar 

  • Leaver C.J., Gray M.W.: Mitochondrial genome organization and expression in higher plants.Ann. Rev.Plant Physiol.33, 373–402 (1982).

    Article  CAS  Google Scholar 

  • Lerbs S., Brautiga E., Parthier B.: Polypeptides of DNA-dependent RNA polymerase of spinach chloroplasts. Characterization by antibody linked polymerase assay and determination of sites of synthesis.EMBO J.4, 1661–1666 (1985).

    PubMed  CAS  Google Scholar 

  • Lescure A.M., Bisanz-Seyer C., Pesey H., Mache R.:In vitro transcription initiation of the spinach chloroplast 16S rRNA gene at two tandem promoters.Nucleic Acids Res.13, 8787 to 8796 (1985).

    Article  Google Scholar 

  • Levens D., Morimoto R., Rabinowitz M.: Mitochondrial transcription complex fromSaccharomyces cerevisiae.J.Biol.Chem.256, 1466–1473 (1981).

    PubMed  CAS  Google Scholar 

  • Lewin R.A., Withers N.W.: Extraordinary pigment complement of a prokaryotic alga.Nature256, 735–737 (1975).

    Article  CAS  Google Scholar 

  • Lonsdale D.M., Hodge T.P., Fauron C.M.R.: The physical map and organization of the mitochondrial genome from the fertile cytoplasm of maize.Nucleic Acids Res.12, 9249–9261 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Lucchini G., Bianchetti R.: Initiation of protein synthesis in isolated mitochondria and chloroplasts.Biochim.Biophys. Acta608, 54–61 (1980).

    PubMed  CAS  Google Scholar 

  • Ludwig M., Gibbs S.P.: DNA is present in the nucleomorph ofCryptomonads. Further evidence that the chloroplast evolved from a eukaryotic endosymbiont.Protoplasma127, 9–20 (1985).

    Article  Google Scholar 

  • Lüttke A., Bonotto S.: Chloroplasts and chloroplast DNA ofAcetabularia mediterranea: facts and hypotheses.Internat.Rev.Cytol.77, 205–242 (1982).

    Google Scholar 

  • Lyttleton J.W.: Isolation of ribosomes from spinach chloroplasts.Exp.Cell.Res.26, 312–317 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Macino G., Tzagoloff A.: Assembly of the mitochondrial membrane system. DNA sequence of a mitochondrial ATPase gene inSaccharomyces cerevisiae.J.Biol.Chem.254, 4617–4623 (1979).

    PubMed  CAS  Google Scholar 

  • Machatt M.A., Ebel J.P., Branlant C.: The 3′-terminal region of bacterial 23S ribosomal RNA: structure and homology with the 3′-terminal region of eukaryotic 28S rRNA and with chloroplast 4.5S rRNA.Nucleic Acids Res.9, 1533–1549 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Mac278-01meI.G. Scott R.M., Zinn A.R., Butow R.A.: Transposition of an intron in yeast mitochondria requires a protein encoded by that intron.

  • Manna E., Brennicke A.: Primary and secondary structure of 26S ribosomal RNA ofOenothera mitochondria.Curr.Genet.9, 505–515 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Maréchal L., Guillemaut P., Grienenberger J.M., Jeannin G., Weil J.H.: Sequence and codon recognition of bean mitochondria and chloroplast tRNAsTrp: evidence for a high degree of homology.Nucleic Acids Res.13, 4411–4416 (1985a).

    Article  PubMed  Google Scholar 

  • Maréchal L., Guillemaut P., Grienenberger J.M., Jeannin G., Weil J.H.: Structure of bean mitochondrial tRNAPhe and localization of the tRNAPhe gene on the mitochondrial genomes of maize and wheat.FEBS Lett.184, 289–293 (1985b).

    Article  Google Scholar 

  • Margulis L.:Origin of Eukaryotic Cells. Yale University Press, New Haven-London 1970.

    Google Scholar 

  • Margulis L.:Symbiosis in Cell Evolution. W.H. Freeman, San Francisco 1981.

    Google Scholar 

  • Marotta R., Colin Y., Goursot R., Bernardi G.: A region of extreme instability in the mitochondrial genome of yeast.EMBO J.1, 529–534 (1982).

    PubMed  CAS  Google Scholar 

  • Meeker R., Tewari K.K.: Divergence of transfer RNA genes in chloroplast DNA of higher plants.Biochim.Biophys.Acta696, 66–75 (1982).

    CAS  Google Scholar 

  • Michael N.L., Rothbard J.B., Shiurba R.A., Linke H.K., Schoolnik G.K., Clayton D.A.: All eight unassigned reading frames of mouse mitochondrial DNA are expressed.EMBO J.3, 3165–3175 (1984).

    PubMed  CAS  Google Scholar 

  • Michel F., Dujon B.: Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast- and nuclear-encoded members.EMBO J.2, 33–38 (1983).

    PubMed  CAS  Google Scholar 

  • Michel F., Cummings D. J.: Analysis of class I introns in a mitochondrial plasmid associated with senescence ofPodospora anserina reveals extraordinary resemblance to theTetrahymena ribosomal intron.Curr.Genet.10, 69–79 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Michel F., Lang B.F.: Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses.Nature316, 641–643 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Michel F., Jacquier A., Dujon B.: Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure.Biochimie64, 867–881 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Mikelsaar R.: Human mitochondrial genome and the evolution of methionine transfer ribonucleic acids.J. Theor.Biol.105, 221–232 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Mocarski E.S., Roizman B.: Structure and role of theHerpes simplex virus DNA termini in inversion circularization and generation of virion DNA.Cell31, 89–97 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Nass M.M.K., Nass S.: Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions.J. Cell Biol.19, 593–611 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Nazar R.N.: A 5.8 rRNA-like sequence in prokayrotic 23S rRNA.FEBS Lett.119, 212–214 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Nazar R.N.: The ribosomal 5.8S RNA: eukaryotic adaptation or processing variant?Can. J. Biochem.Cell Biol.62, 311–320 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Netzker R., Köchel H.G., Basak N., Küntzel H.: Nucleotide sequence ofAspergillus nidulans mitochondrial genes coding for ATPase subunit 6, cytochrome oxidase subunit 3, seven unidentified proteins, four transfer RNAs and L rRNA.Nucleic Acids Res.10, 4783–4794 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Neumann H., Gierl A., Tu J., Leibrock J., Staiger D., Zillig W.: Organization of the genes for ribosomal RNA inArchaebacteria.Mol.Gen.Genet.192, 66–72 (1983).

    Article  CAS  Google Scholar 

  • Nevzglyadova O.V.: Instability of mitochondrial genome. (In Russian)Molec.Biol.18, 293–312 (1984).

    CAS  Google Scholar 

  • Obar B., Green J.: Molecular archaelogy of the mitochondrial genome.J.Mol.Evol.22, 243–251 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Ociewacz H., Esser K.: The mitochondrial plasmid ofPodospora anserina: A mobile intron of a mitochondrial gene.Chirr.Genet.8, 299–305 (1984).

    Article  Google Scholar 

  • Ohme M., Kamogashira T., Shinozoki K., Sugiura M.: Locations and sequences of tobacco chloroplast genes for tRNAPro (UGG), tRNATrp, tRNAMet and tRNAGly (GCC): the tRNAGly contains only two base-pairs in the D stem.Nucleic Acids Res.12, 6741–6749 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Ohme M., Kamogashira T., Shinozaki K., Sugiura M.: Structure and cotranscription of tobacco chloroplast genes for tRNAGly(UUC), tRNATyr(GUA) and tRNAAsp(GUC).Nucleic Acids Res.13, 1045–1056 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Ojala D., Montoya J., Attardi G.: tRNA punctuation model of RNA processing in human mitochondria.Nature290, 470–474 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Olsen G.J., Pace N.R., Nuell M., Kaine B.P., Gupta R., Woese C.R.: Sequence of the 16S rRNA gene from the thermoacidophilic archaebacteriumSulfolobus solfataricus and its evolutionary implications.J.Mol.Evol.22, 301–307 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Orozco E.M. Jr.,Rushlow K.E., Dodd J.R., Hallick R.B.:Euglena gracilis chloroplast ribosomal RNA transcription unite. II. Nucleotide sequence homology between the 16S-23S ribosomal RNA spacer and the 16S ribosomal RNA leader regions.J.Biol.Chem.255, 10997 to 11003 (1980).

    Google Scholar 

  • Palleschi C., Francisci S., Zennaro E., Frostali L.: Expression of the clustered mitochondrial tRNA genes inSaccharomyces cerevisiae: transcription and processing of transerips.EMBO J.3, 1389–1395 (1984a).

    PubMed  CAS  Google Scholar 

  • Palleschi C., Francisci S., Bianchi M.M., Frostali L.: Initiation of transcription of a mitochondrial tRNA gene, cluster inSaccharomyces cerevisiae.Nucleic Acids Res.12, 7317–7326 (1984b).

    Article  PubMed  CAS  Google Scholar 

  • Palmer J.D.: Chloroplast DNA exists in two orientations.Nature30, 92–93 (1983).

    Article  Google Scholar 

  • Palmer J.D.: Chloroplast DNA and molecular phylogeny.BioEssays2, 263–267 (1985a).

    Article  CAS  Google Scholar 

  • Palmer J.D.: Comparative organization of chloroplast genomes.Ann.Rev.Genet.19, 325–354 (1985b).

    Article  PubMed  CAS  Google Scholar 

  • Palmer J.D., Thompson W.F.: Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost.Cell29, 537–550 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Palmer J.D., Shields C.R.: Tripartite structure of theBrassica campestris mitochondrial genome.Nature307. 437–440 (1984).

    Article  CAS  Google Scholar 

  • Parks T.D., Dougherty W.G., Levings C.S. III.,Timothy D.H.: Identification of two methionine transfer RNA genes in the maize mitochondrial genome.Plant Physiol.76, 1079–1082 (1984).

    PubMed  CAS  Google Scholar 

  • Parks T.D., Dougherty W.G., Levings C.S. III,Timothy D.H.: Identification of an aspartate transfer RNA gene in maize mitochondrial DNA.Curr.Genet.9, 517–519 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Parthier B.: Transfer RNA and the phylogenetic origin of cell organelles.Biol.Zbl.101, 577–596 (1982).

    CAS  Google Scholar 

  • Perler F., Epstrati A., Lomedico D., Gilbert W., Kolodner R., Dodgsos J.: The evolution of genes. The chicken preproinsulin gene.Cell20, 555–566 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Pflug H.D.: Early geological record and the origin of life.Naturwiss.71, 63–68 (1984).

    Article  CAS  Google Scholar 

  • Postgate J.R., Kent H.M., Robson R.L., Chesshyr J.A.: The genomes ofDesulfovibrio gigas andDesulfovibrio vulgaris.J.Gen.Microbiol.130, 1597–1601 (1984).

    PubMed  CAS  Google Scholar 

  • Ris H., Plaut W.: Ultrastructure of DNA-containing areas in the chloroplast ofChlamydomonas.J.Cell Biol.13, 383–302 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Roberts J. W., Grula J.W., Posakony J.W., Hudspeth R., Davidson E.M.: Comparison of sea urchin and human mtDNA: Evolutionary rearrangement.Proc.Nat.Acad.Sci.80, 4614–4618 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Robinson R.R., Davidson N.: Analysis of aDrosophila tRNA gene cluster: Two tRNA genes contain intervening sequences.Cell23, 251–259 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Rochaix J.D., Rahire M., Michel F.: The chloroplast ribosomal intron ofChlamydomonas reinhardii codes for a polypeptide related to mitochondrial maturases.Nucleic Acids Res.13, 975–984 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Roe B.A., Ma D.P. Wilson R.K., Wong J.F.H.: The complete nucleotide sequence of theXenopus laevis mitochondrial genome.J.Biol.Chem.260, 9759–9774 (1985).

    PubMed  CAS  Google Scholar 

  • Rogers J.: Split gene evolution. Exon shuffling and intron insertion in serine protease genes.Nature315, 458–459 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Rouviere-Yaniv J., Yaniv M., Germond J.E.:Escherichia coli DNA binding protein HU forms nucleosome like structure with circular double stranded DNA.Cell17, 265–274 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Sadoff M.L., Shimei B., Ellis S.: Characterization ofAzotobacter vinelandii deoxyribonueleic acid and folded chromosomes.J.Bacteriol.138, 871–877 (1979).

    PubMed  CAS  Google Scholar 

  • Sanger F., Coulson A.R., Friedmann T., Air G.M., Barrell B.G., Brown N.L., Fiddes J.C., Hutchison C.A., Slocombe P.M.: Nucleotide sequence of bacteriophage ΦX174.J.Mol. Biol.125, 225–246 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Schaack J., Sharp S., Dingermann T., Borke D.J., Cooley L., Söll D.: The extent of a eukaryotic tRNA gene. 5′- and 3′-flanking sequence dependence for transcription and stable complex formation.J.Biol.Chem.259, 1461–1467 (1984).

    PubMed  CAS  Google Scholar 

  • Schardl Ch.L., Lossdale D.M., Pring D.R., Rose K.R.: Linearization of maize mitochondrial chromosomes by recombination with linear episomes.Nature310, 292–296 (1984).

    Article  CAS  Google Scholar 

  • Schatz G., Mason T.: The biogenesis of mitochondrial proteins.Ann.Rev.Biochem.43, 51–87 (1974).

    Article  CAS  Google Scholar 

  • Schmidt R.J., Myers A.M., Gillham N.W., Boyntos J.E.: Immunological similarities between specific chloroplast ribosomal proteins fromChlamydomonas reinhardtii and ribosomal proteins fromEscherichia coli.Mol.Biol.Evol.1, 317–334 (1984).

    PubMed  CAS  Google Scholar 

  • Schopf J.W., Oehler D.Z.: How old are the eukaryotes?Science193, 47–49 (1976).

    Article  PubMed  Google Scholar 

  • Schwarz Z., Kössel H.: The primary structure of 16S rRNA fromZea mays chloroplast is homologous toEscherichia coli 16S rRNA.Nature283, 739–742 (1980).

    Article  CAS  Google Scholar 

  • Seewaldt E., Stackebrandt E.: Partial sequence of 16S ribosomal RNA and the phylogeny ofProchloron.Nature295, 618–620 (1982).

    Article  CAS  Google Scholar 

  • Seilhamer J.J., Cummings D.J.: Structure and sequence of the mitochondrial 20S rRNA and tRNAtyr gene ofParamecium primaurelia.Nucleic Acids Res.9, 6391–6406 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Sèraphin B., Simon M., Faye G.: A mitochondrial reading frame which may code for a maturaselike protein inSaccharomyces cerevisiae.Nucleic Acids Res.13, 3005–3014 (1985).

    Article  PubMed  Google Scholar 

  • Sharp P.A.: On the origin of RNA splicing and introns.Cell42, 397–400 (1982).

    Article  Google Scholar 

  • Sharp S., DeFranco D., Dingermann T., Farvell P., Söll D.: Internal control regions for transcription of eukaryotic tRNA genes.Pro.Nat.Acad.Sci.78, 6657–6661 (1981).

    Article  CAS  Google Scholar 

  • Shine J., Dalgarno L.: The 3′-terminal sequence ofEscherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites.Proc.Nat.Acad.Sci.71, 1342–1346 (1976).

    Article  Google Scholar 

  • Shinozaki K., Yamada C., Takahata N., Sugiura M.: Molecular cloning and sequence analysis of cyanobacterial gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase.Proc.Nat.Acad.Sci.80, 4050–4054 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Sigmund C.D., Ettaebi M., Morgan E.A.: Antibiotic resistance mutation in 16S and 23S ribosomal RNA genesof Escherichia coli.Nucleic Acids Res.12, 4653–4663 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Sor F., Fukuhara H.: Complete DNA sequence coding for the large ribosomal RNA of yeast mitochondria.Nucleic Acids Res.11, 339–348 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Sor F., Fukuhara H.: Erythromycin and spiramycin resistance mutations of yeast mitochondria. Nature of theRIB2 locus in the large RNA gene.Nucleic Acids Res.12, 8313–8318 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Spencer D.F., Bonen L., Bray M.W.: Primary sequence of wheat mitochondrial 5S ribosomal ribonucleic acid: function and evolutionary implications.Biochemistry20, 4022–4029 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Spencer D.F., Schnare M.N., Gray M.W.: Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria andEscherichia coli.Proc.Nat.Acad. Sci.81, 493–497 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz A.A., Krebbers E.T., Schwarz Z., Gubbins E.J., Bogorad L.: Nucleotide sequence of five maize chloroplast transfer RNA genes and their flanking regions.J.Biol.Chem.258, 5503–5511 (1983).

    PubMed  CAS  Google Scholar 

  • Stern D.B., Lousdale D.M.: Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common.Nature299, 698–702 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Stern D.B., Dyer T.A., Lonsdale D.M.: Organization of the mitochondrial ribosomal RNA genes of maize.Nucleic Acids Res.10, 3333–3340 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter G., Kössel H.: Cotranscription and processing of 23S, 4.5S and 5S rRNA in chloroplasts fromZea mays.Nucleic Acids Res.12, 7633–7647 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Sugita M., Sugiura M.: Nucleotide sequence and transcription of the gene for the 32,000 dalton thylakoid membrane protein fromNicotiana tobacum.Mol.Gen.Genet.195, 308–313 (1984).

    Article  CAS  Google Scholar 

  • Suyama Y., Fukuhara H., Sor F.: A fine restriction map of the linear mitochondrial DNA ofTetrahymena pyriformis: genome size, map locations of rRNA and tRNA genes, terminal inversion repeat, and restriction site polymorphism.Curr.Genet.9, 479–493 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T., Kawano S., Kuroiwa T.: Structure of three-dimensionally rod-shaped mitochondrial nucleoids isolated from the slime moldPhysarum polycephalum.J.Cell.Sci.58, 241–261 (1982).

    PubMed  CAS  Google Scholar 

  • Takaiwa F., Sugiura M.: The nucleotide sequence of chloroplast 5S ribosomal RNA from a fern,Dryopteris acuminata.Nucleic Acids Res.10, 5369–5373 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Thraikill K.M., Birky C.W. Jr.,Lückemann G., Wolfe K.: Intracellular population genetics. Evidence for random drift of mitochondrial allele frequences inSaccharomyces cerevisiae andSchizosaccharomyces pombe.Genetics96, 237–262 (1980).

    Google Scholar 

  • Thurlow D.L., Mason T.L., Zimmermann R.A.: 5S RNA like structure in large ribosomal subunit RNAs of fungal mitochondria.FEBS Lett.173, 277–282 (1982).

    Article  Google Scholar 

  • Tomioka N., Sugiura M.: The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga,Anacystis nidulans.Mol.Gen.Genet.191, 46–50 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Tomioka N., Sugiura M.: Nucleotide sequence of the 16S–23S spacer region in therrnA operon from a blue-green alga,Anacystis nidulans.Mol.Gen.Genet.193, 427–430 (1984).

    Article  CAS  Google Scholar 

  • Troitsky A.V., Bobrova V.K., Ponomarev A.G., Antonov A.S.: The nucleotide sequence of chloroplast 4.5S rRNA fromMnium rugicum (Bryophyta): mosses also possess this type of RNA.FEBS Lett.176, 105–109 (1984).

    Article  Google Scholar 

  • Tymms M.J., Scott N.S., Possingham J.V.: Chloroplast and nuclear DNA content of cultured spinach leaf discs.J.Exp.Bot.33, 831–837 (1982).

    Article  CAS  Google Scholar 

  • Ueda T., Watanabe K., Ohta T.: Structural features of bovine mitochondrial tRNASerAGY lacking the D arm.Proc.Japan.Acad.59, 339–342 (1983).

    Article  CAS  Google Scholar 

  • Vanderberghe A., Chen M.-W., Dams E., de Baere R., de Roeck E., Huysmans E., de Wächter R.: The corrected nucleotid sequences of 5S RNAs from six angiosperms. With some notes on 5S RNA secondary structure and molecular evolution.FEBS Lett.171, 17–23 (1984).

    Article  Google Scholar 

  • Van der Horst G., Tabak H.F.: Self-splicing of yeast mitochondrial ribosomal and messenger RNA precursors.Cell40, 759–766 (1985).

    Article  PubMed  Google Scholar 

  • Van Etten R.A., Walberg M.W., Clayton D.A.: Precise localization and nucleotide sequence of the two mouse mitochondrial rRNA genes and three immediately adjacent novel tRNA genes.Cell22, 157–170 (1980).

    Article  PubMed  Google Scholar 

  • Verbeet M.Ph., Van Heerikhuizen H., Klootwijk J., Fontijn R.D., Planta R.J.: Evolution of yeast ribosomal DNA: Molecular cloning of the rDNA units ofKluyveromyces lactis andHansenula wingei and their comparison with the rDNA units of otherSaccharomycetoideae.Mol.Gen.Genet.195, 116–125 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Vidal G.: The oldest eukaryotic cells.Sci.Amer.250, 32–41 (1984).

    Article  Google Scholar 

  • Villanueva E., Luehrsen K.R., Gibson J., Delihas N., Fo 9G.E.: Phylogenetic origin of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences.J. Mol. Evol.22, 46–52 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Vogel D.W., Hartmann R.K., Bartsch M., Subramanian A.R., Kleinow W., O’Brien T.W., Pieler T., Erdmann V.A.: Reconstitution of 50S ribosomal subunits fromBacillus stearothermophilus with 5S RNA from spinach chloroplasts and low-Mr RNA from mitochondria ofLocusta migratoria and bovine liver.FEBS Lett.169, 67–72 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Wallace D.C.: Structure and evolution of organeile genomes.Microbiol. Rev.46, 208–240 (1982).

    PubMed  CAS  Google Scholar 

  • Wallace D.C.: Structure and evolution of organeile DNAs, pp. 87–100 inH.E.A. Schenk, W. Schwemmler (Eds.):Endocylobiology, Vol. II. W. de Gruyter, Berlin-New York 1983.

    Google Scholar 

  • Ward B.L., Anderson R.S., Bendich A.J.: The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae).Cell25, 793–803 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Wesolowski M., Fukuhara H.: Linear mitochondrial deoxyribonucleic acid from the yeastHansenula mrakii.Mol.Cell Biol.1, 387–393 (1981).

    PubMed  CAS  Google Scholar 

  • Whatley J.M., Whatley F.R.: Chloroplast evolution.New Phytol.87, 233–247 (1981).

    Article  CAS  Google Scholar 

  • Whitfeld P.R.: Chloroplast RNA, pp. 297–332 inP.H. Stewart, D.S. Letham (Eds.):The Ribonucleic Acids. Springer-Verlag, Berlin-Heidelberg-New York 1977.

    Google Scholar 

  • Whitfeld P.R., Bottomley W.: Organization and structure of chloroplast genes.Ann.Rev. Plant Physiol.34, 279–326 (1983).

    Article  CAS  Google Scholar 

  • Wich B., Jarsch M., Böck A.: Apparent operon for a 5S ribosomal RNA gene and for tRNA genes in the archaebacteriumMethanococcus vannielii.Mol.Gen.Genet.196, 146–151 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Wilde C.D., Crowther C.E., Cowan N.J.: Diverse mechanism in the generation of human β-tubulin pseudogenes.Science217, 549–552 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Woese C.R., Wolfe R.S. (Eds.):The Bacteria, Vol.8:Archaebacteria. Academic Press, New York 1985.

    Google Scholar 

  • Woese C.R., Gutell R., Gupta R., Noller H.F.: Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids.Microbiol.Rev.47, 621–669 (1983).

    PubMed  CAS  Google Scholar 

  • Wollgiehn R.: RNA polymerase and regulation of transcription, pp. 125–170 inB. Parthier, D. Boulter (Eds.):Encyclopaedia of Plant Physiology, N.S., Vol. 11B: Nucleic Acids and Proteins in Plants. II. Springer-Verlag, Berlin-Heidelberg-New York 1982.

    Google Scholar 

  • Yamada Y., Ohki M., Ishikura H.: The nucleotide sequence ofBacillus subtilis tRNA genes.Nucleic Acids Res.11, 3037–3045 (1993).

    Article  Google Scholar 

  • Yang D., Oyaizu Y., Oyaizu H., Olsen G.J., Woese C.R.: Mitochondria origins.Proc.Nat. Acad. Sci.82, 4443–4447 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Young H.A., Maklis R., Steitz J.A.: Sequence of the 16S–23S spacer region in two ribosomal RNA operons ofEscherickia coli.J.Biol.Chem.254, 3264–3271 (1979).

    PubMed  CAS  Google Scholar 

  • Zakut R., Shani M., Givol D., Neuman S., Yaffe D., Nudel V.: Nucleotide sequence of the rat skeletal muscle actin gene.Nature298, 857–859 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G., Clegg M.T.: The barley chloroplast DNAatpBE, trnM2, andtrnV1 loci.Nucleic Acids Res.12, 2549–2559 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G., Bottomley W., Whitfeld P.R.: Junctions of the large single copy region and the inverted repeats inSpinacin oleracea andNicotiana debney chloroplast DNA: Sequence of the genes for tRNA and the ribosomal proteins S19 and L2.Nucleic Acids Res.12, 6547–6558 (1984a).

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G., Clegg M.T., Brown A.H.D.: The nature of nucleotide sequence divergence between barley and maize chloroplast DNA.Genetics106, 735–749 (1984b).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebringer, L., Krajčovič, J. Prokaryotic character of chloroplasts and mitochondria — the present knowledge. Folia Microbiol 32, 244–282 (1987). https://doi.org/10.1007/BF02881107

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02881107

Keywords

Navigation