Skip to main content
Log in

Light effects on the growth and morphogenesis of potato(Solanum tuberosum) in vitro: A review

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Growth, morphogenesis, and tuberization of potato tissuesin vitro are affected by light. Measurements of the various aspects of light that control development and growth of potato are outlined. Physical parameters like light sources, delivery of the light source, and the degradation of culture media by light are discussed. Irradiance, photoautotrophic growthin vitro, spectral wavelength, and photoperiod modify the responses of potato tissues in culture. Acclimatization of tissue culture plantlets, vegetative growth, and the production, quality, and dormancy of microtubers are modified by light. New light sources such as light-emitting diode (LED) lamps are becoming available forin vitro research and for micropropagation of potato. Pulsed or chopper light has the potential to save energy costs. Light effects on potato protoplasts, anther culture, virus eradication, andin vitro conservation are discussed. Potential new research areas are the effect of the spectral quality of light on regeneration of shoots and somatic embryosin vitro, end-of-day red and far-red light treatments, axillary shoot formation in cultured plantlets, and the use of LEDs. The influence of monochromatic spectral filters on growth and development of potatoes in tissue culture could potentially lead to improvements in productivity. The relationship between daily quantum light integral and photoperiod and their effects on growth and morphogenesis of the potato will provide some useful areas of research.

Resumen

Los procesos de crecimiento, morfogénesis y tuberización de los tejidos de papain vitro son afectados por la luz. Mediciones de los varios aspectos de la luz que controlan el crecimiento y desarrollo de la papa son delineadas. Parámetros físicos tales como la fuente de luz, difusión y su efecto en la degradación del medio de cultivo son discutidos. La irradiación, el crecimiento foto-autotróficoin vitro, la longitud de onda espectral y el foto período modifican las respuestas de los tejidos de la papa en cultivo. La aclimatación de las plántulas de cultivo de tejidos, crecimiento vegetativo y producción, calidad y dormancia de los microtubérculos son modificadas por la luz. Nuevas fuentes de luz como aquella emitida por las lámparas de diodo (LED) están siendo disponibles para la investigaciónin vitro y la micropropagación de la papa. La luz intermitente tiene el potencial de ahorrar los costos de energía. Los efectos de la luz sobre los protoplastos de papa, cultivo de anteras, erradicación de virus y conservaciónin vitro son discutidos. Nuevas áreas potenciales de investigación son, el efecto de la calidad espectral de la luz sobre la regeneración de los brotes y los embriones somáticosin vitro, tratamientos con luz roja del final del día y del lado lejano del espectro infrarrojo, formación axilar de brotes en plántulas cultivadasin vitro y el uso de LEDs. La influencia de los filtros espectrales monocromáticos sobre el crecimiento y desarrollo de plántulas de papa en cultivo de tejidos podría potencialmente conducir a un mejoramiento en la productividad. La relación entre la cantidad diaria de luz integral y foto período y sus efectos sobre el crecimiento y morfogénesis de la papa proporcionarán algunas áreas útiles de investigación.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CO2 :

carbon dioxide

B:

blue

DOF:

diffusive optical fibres

DLI:

daily light integral

DQLI:

daily quantum light integral

FR:

far red

IAA:

indole acetic acid

LEDs:

light-emitting diodes

PAR:

photosynthetically active radiation

PPF:

photosynthetic photon flux

PPFD:

photosynthetic photon flux density

R:

red

UV:

ultraviolet

Literature cited

  • Aksenova NP, SA Golyanovskaya, TN Konstantinova, LI Sergeeva, KhYa Khein, and MKh Chailakhyan. 1990. Action by red and blue light on uptake and conjugation of 1−14 C-IAA by potato plants in culturein vitro. Fiziologiya Rastenii 37:981–986. (Tansl Timiryazev Institute of Plant Physiol, Acad Sci USSR, Moscow).

    CAS  Google Scholar 

  • Aksenova NP, TN Konstantinova, and TN Chailakhyan. 1989. Morphogenetic effects of blue and red light during exposure of overground and underground organs of potato in culture in vitro. Dolkady Akademii Nauk SSSR 305:508–512. (Transl).

    Google Scholar 

  • Aksenova NP, TN Konstantinova, LI Sergeeva, I Machackova and SA Golyanovskayua. 1994. Morphogenesis of potato plants in vitro. I. Effect of light quality and hormones. J Plant Growth Reg 13:143–146.

    Article  CAS  Google Scholar 

  • Albano JP, and WB Miller. 2001. Photodegradation of FeDTPA in nutrient solutions. I. Effects of irradiance, wavelength, and temperature. HortScience 36:313–316.

    CAS  Google Scholar 

  • Alix MJ, S Savvides, J Blake, R Herrmann, and R Hornung. 2001. Effects of illumination source, culture ventilation and sucrose on potato (Solanum tuberosum) microtuber production under short days. Ann Appl Biol 139:175–187.

    Article  Google Scholar 

  • Anderson A. 1986. Comparison of fluorescent lamps as an energy source for production of tomato plants in a controlled environment. Sci Hort 28:11–18.

    Article  Google Scholar 

  • Baerug R. 1962. Influence of different rates and intensities of light on solanine content and cooking quality of potato tubers. Eur Potato J 5:242–251.

    Article  Google Scholar 

  • Bajaj YPS, and JW McAllen. 1969. Effect of various light treatments on chlorophyll formation in excised potato roots. Physiol Plant 22:25–28.

    Article  Google Scholar 

  • Barg R, N Umiel, and Y Nitzan. 1983a. Sensitivity of tobacco (Nicotiana tabacum) tissue culture to chloramphenicol and its photodegradation products. Plant Cell Envir 6:77–82.

    Article  CAS  Google Scholar 

  • Barg R, N Umiel, and Y Nitzan. 1983b. Fate of chloramphenicol in tobacco (Nicotiana tabacum) tissue culture under various light regimes. Plant Cell Envir 6:83–88.

    Article  CAS  Google Scholar 

  • Barker WG. 1953. A method for thein vitro culturing of potato tubers. Science 118:384–385.

    Article  PubMed  CAS  Google Scholar 

  • Batutis EJ, and EE Ewing. 1982. Far-red reversal of red light effect during long night induction of potato (Solanum tuberosum L.). Plant Physiol 69:672–674.

    PubMed  CAS  Google Scholar 

  • Blanc A, JC Mery, and J Boisard. 1986. Action des radiations de lumière rouge sur la survie et la tubérisation de germes de pomme de terre cultivés ‘in vitro’: influence de leur âge physiologique. Potato Res 29:381–389.

    Article  Google Scholar 

  • Both AJ. 1994. HID lighting in horticulture: A short review. Greenhouse Systems: Automation, Culture and Environment: Proc Intl Conf Greenhouse Sys. Northeast Agr Eng. pp 208–222.

  • Buddendorf-Joosten JMC, and EJ Woltering. 1996. Controlling the gaseous compositionin vitro: Description of a flow system and effects of the different gaseous components inin vitro growth of potato plantlets. Sci Hort 65:11–23.

    Article  Google Scholar 

  • Bula RJ, RC Morrow, TW Tibbitts, BJ Barta, RW Ignatius, and TS Martin. 1991. Light-emitting diode as a radiation source for plants. HortScience 26:203–205.

    PubMed  CAS  Google Scholar 

  • Cao W, and TW Tibbitts. 1991. Physiological responses in potato plants under continuous irradiation. J Am Soc Hort Sci 116:525–552.

    CAS  Google Scholar 

  • Carvalho SMP, and E. Heuvelink. 2001. Influence of greenhouse climate and plant density on external quality of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura): First steps towards a quality model. J Hort Sci Biotech 76:249–258.

    Google Scholar 

  • Cassells AC, and RD Long. 1982. The elimination of potato viruses X, Y, S and M in meristem and explant cultures of potato in the presence of Virazole. Potato Res 25:165–173.

    Article  Google Scholar 

  • Chailakhyan MKh, AV Makeev, NP Aksenova, TN Konstantinova, and AT Mokronosov. 1992. Effects of daylength and light spectral composition on morphogenesis and photosynthesis of plants of the potatoSolanum andigenum (Juz. Et Buk.). Sov Plant Physiol (Eng Trans Fiziol Rast) 39:129–134.

    Google Scholar 

  • Chailakhyan, MKh, LI Yanina, AG Devedzhyan and GN Lootova. 1982. Photoperiodic control of tuber formation in grafting of tobacco on potato. Dokl Akad Nauk SSSR. Bot Sci Sect (Eng Transl) 265(5): 1276–1280.

    Google Scholar 

  • Charles G, and L Rossignol and M Rossignol. 1992. Environmental effects on potato plantsin vitro. J Plant Physiol 139:708–713.

    Google Scholar 

  • Chaves MH. 1994. Environmental constraints to photosynthesis inex vitro plants.In: PJ Lumsden, JR Nicholas and WJ Davies (eds), Physiology, Growth and Development. Kluwer Academic Publishers, The Netherlands. pp 1–18.

    Google Scholar 

  • Chée R, and RM Pool. 1989. Morphogenetic responses to propagule trimming, spectral irradiance, and photoperiod of grapevine shoots reculturedin vitro. J Am Soc Hort Sci 114:350–354.

    Google Scholar 

  • Chen THH, and PH Li. 1987. In vitro induction of cold acclimatization in potato.In: YPS Bajaj (ed), Biotechnology in Agriculture and Forestry 3—Potato. Springer-Verlag, New York. pp 256–267.

    Google Scholar 

  • Coleman WK, and SE Coleman. 2000. Modification of potato microtuber dormancy during induction and growthin vitro orex vitro. Amer J Potato Res 77:103–120.

    CAS  Google Scholar 

  • Cuello JL. 2002. Latest developments in artificial lighting technologies for bioregenerative space life support.In: M Dorais (ed), Proc 4th Intl ISHS Symposium on Artificial Lighting. Québec City, Québec, Canada, Nov 7–9, 2000.

  • Cushman KE, and TW Tibbitts. 1996. Size of tuber propagule influences injury of ‘Kennebec’ potato plants by constant light. HortScience 31:1164–1166.

    PubMed  CAS  Google Scholar 

  • Decoteau DR, and LE Craker. 1984. Abscission: characterization of light control. Plant Physiol 75:87–89.

    PubMed  CAS  Google Scholar 

  • Decoteau DR, and HH Friend. 1991. Growth and subsequent yield of tomatoes following end-of-day light treatment of transplants. HortScience 26:1528–1530.

    Google Scholar 

  • Decoteau DR, HA Hatt, JW Kelley, MJ McMahon, and N Rajapakse. 1993. Applications of photomorphogenesis research to horticultural systems. HortScience 28:974, 1063.

    Google Scholar 

  • Dobránski J. 2000. Effects of light and genetic origin onin vitro tuberization of potato. Acta Agron Hung 48:1–10.

    Article  Google Scholar 

  • Dodds JH, Z Huaman, and R Lizarrage. 1991. Potato germplasm conservation.In: JH Dodds (ed),In vitro Methods for Conservation of Plant Genetic Resources. Chapman and Hall, London. pp 93–109.

    Google Scholar 

  • Dodds JH, D Silva-Rodriguez, and P Tovar. 1992. Micropropagation of potato.In: YPS Bajaj (ed), Biotechnology in Agriculture and Forestry 19—High-tech and Micropropagation III. Springer-Verlag, Berlin. pp 92–106.

    Google Scholar 

  • Dooley JH. 1991. Influence of lighting spectra on plant tissue culture. Ann Amer Soc Agr Eng Meeting, Chicago, USA. Paper no. 917530.

  • Driver CM, and JG Hawkes. 1943. Photoperiodism in the potato. Tech Comm Imp Bur Plant Breed Genet.

  • Dunlap JR, and KM Robacker. 1988. Nutrient salts promote light-induced degradation of IAA in tissue culture media. Plant Physiol 88:379–382.

    Article  PubMed  CAS  Google Scholar 

  • Dwelle RB. 1985. Photosynthesis and photoassimilate partitioning.In: PL Li (ed), Potato Physiology. Academic Press, London. pp 36–58.

    Google Scholar 

  • Economou AS, and RE Read. 1987. Light treatments to improve efficiency of in vitro propagation systems. HortScience 22:751–754.

    Google Scholar 

  • Ewing EE. 1990. Induction of tuberization in potato.In: ME Vayda and WP Park (eds), The Molecular and Cellular Biology of the Potato. Biotechnology in Agriculture. No. 3. C.A.B. Intl, UK. pp 25–41.

    Google Scholar 

  • Ewing EE, and P Struik. 1992. Tuber formation in potato: Induction, initiation, and growth.In: J Janik (ed), Hort Rev 14. John Wiley & Sons, New York. pp 89–198.

    Google Scholar 

  • Ewing EE, and PF Wareing. 1978. Shoot, stolon and tuber formation on potato (Solanum tuberosum L.) Cuttings in response to photoperiod. Plant Physiol 61:348–353.

    PubMed  CAS  Google Scholar 

  • Fujiwara K, and T Kozai. 1995. Physical microenvironment and its effects.In: J Aitken-Christie, T Kozai and M L Smith (eds), Automation and Environmental Control in Plant Tissue Culture. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp 775–825.

    Google Scholar 

  • Garner N, and J Blake. 1989. The induction and development of potato microtubersin vitro on media free of growth regulating substances. Ann Bot 63:663–674.

    CAS  Google Scholar 

  • George AT (ed). 1986. Technical guideline on seed potato micropropagation and multiplication. FAO, Rome. Plant Production and Protection Paper # 71.

  • Gopal J, JL Minocha, and HS Dhaliwal. 1998. Microtuberization in potato. Plant Cell Rep 17:794–798.

    Article  CAS  Google Scholar 

  • Gopal J, A Chamail, and D Sarkar. 2004.In vitro production of microtubers for conservation of potato germplasm: effect of genotype, abscisic acid, and sucrose. In Vitro Plant 40:485–490.

    Article  CAS  Google Scholar 

  • Green MA, J Zhao, A Wang, PJ Reece, and M Gal. 2001. Efficient silicon light-emitting diodes. Nature 412:805–808.

    Article  PubMed  CAS  Google Scholar 

  • Hangarter RP, and TC Stasinopoulos. 1991. Repression of plant tissue culture growth by light is caused by photochemical change in the culture medium. Plant Sci 79:253–257.

    Article  CAS  Google Scholar 

  • Hart JW. 1988. Light and Plant Growth. Unwin Hyman, London.

    Google Scholar 

  • Hawkes JG. 1992. Biosytematics of the potato.In: P Harris (ed), The Potato Crop. Chapman-Hall. pp 13–64.

    Google Scholar 

  • Hayashi M, K Fujiwara, T Kozai, M Tateno, and Y Kitaya. 1994. Effects of lighting cycle on daily CO2 exchange and dry weight increase of potato plantletsin vitro cultured photoautotrophically. XXIV Intl Hort Congr. 21–27 Aug 1994. Kyoto, Japan.

  • Hayashi M, N Fujta, Y Kiaya, andT Kozai. 1992. Effect of sideward lighting on the growth of potato plantletsin vitro.In: M Hayashi, A Kano and E Goto (eds), International Symp on Transplant Production Systems. Yokohama, Japan, July 21–26, 1992. Acta Hort (Wageningen) 319:163–166.

    Google Scholar 

  • Heins RD, and HF Wilkins. 1979. The influence of node number, light source, and time of irradiation during darkness on lateral branching and cutting production in ‘Bright Golden Anne’ chrysanthemum. J Am Soc Hort Sci 104:265–270.

    Google Scholar 

  • Heszky LE, and M Nagy. 1987.In vitro conservation of potato germplasm in Hungary.In: YPS Bajaj (ed), Biotechnology in Agriculture and Forestry 3—Potato. Springer-Verlag, New York. pp 441–452.

    Google Scholar 

  • Hussey G, and NJ Stacey. 1981.In vitro propagation of potato (Solanum tuberosun L.). Ann Bot 48:787–796.

    Google Scholar 

  • Hussey G, and NJ Stacey. 1984. Factors affecting the formation ofin vitro tubers of potato (Solanum tuberosum L.). Ann Bot 53:565–578.

    CAS  Google Scholar 

  • Huth W, and O Bode. 1970. Befreiung vollig infizierter Kartoffelsorten von Infektionen des Kartoffel-SlVirus durch Meristemkultur. Nachrichtenbl Dsch Pflanzenschutdienstes (Braun schweig) 22:37–39.

    Google Scholar 

  • Jackson MB, AJ Abbott, AR Belcher, KC Hall, R Butler, and J Cameron. 1991. Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann Bot 67:229–237.

    CAS  Google Scholar 

  • Jackson SD. 1999. Multiple signalling pathways control tuber induction in potato. Plant Physiol 119:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Jao RC, and W Fang. 2004a. Effects of frequency and duty ratio on the growth of potato planteletsin vitro using light-emitting diodes. HortSci 39:375–379.

    Google Scholar 

  • Jao RC, and W Fang. 2004b. Growth of potato plantletsin vitro is different when provided concurrent versus alternating blue and red light photoperiods. HortSci 39:380–382.

    Google Scholar 

  • Joyce SM, and AC Cassells. 2002. Variation in potato microplant morphologyin vitro and DNA methylation. Plant Cell Tiss Org Cult 70:125–137.

    Article  CAS  Google Scholar 

  • Kadkade PG, and P Wetherbee. 1983. Light-napthaleneacetic acid interaction on morphogenesis in asparagus (Asparagus officinalis) tissue culture. Z Pflanzenphysiol 110:281–284.

    Google Scholar 

  • Kitaya Y, O Fukuda, T Kozai, and C Kirdmanee. 1995. Effects of light intensity and lighting direction on the photoautotrophic growth and morphology of potato plantletsin vitro. Sci Hort 62:15–24.

    Article  Google Scholar 

  • Klein RE, and CH Livingston. 1983. Effect of benomyl on shoot-tip culture from PVX and PVS-infected potatoes. Am Potato J 60:467–473.

    Article  Google Scholar 

  • Konstantinova TN, NP Aksenova, LI Sergeeva, and MKh Chailakhyan. 1987. Interaction of light and phytohormones in regulation of morphogenetic processes in thein vitro culture. Fizologia Rastenii (Sov Plant Physiol, Eng Trans) 34:803.

    Google Scholar 

  • Kozai T, M Hayashi, and O Ochiai. 1991. Effect of sidewards lighting on the growth and morphology of the potato. J Jpn Soc Hort Sci 60 (Suppl 1):228–229.

    Google Scholar 

  • Kozai T, S Kino, BR Jeong, M Hayashi, M Kinowaki, M Ochiai, and K Mori. 1992. A sideward lighting system using diffusive optical fibres for production of vigorous micropropagated plantlets.In: M Hayashi, A Kano and E Goto (eds), Proc Int Symp on Transplant Production Systems. Yokohama, Japan, July 21–26, 1992. Acta Hort (Wageningen) 319:237–242.

    Google Scholar 

  • Kozai T, Y Koyama, and I Watanabe. 1988. Multiplication of potato plantlets in vitro with sugar-free medium under high photosynthetic photon flux. Acta Hort (Wageningen) 230:121–127.

    Google Scholar 

  • Krizek DT, RM Mirecki, SJ Britz, WG Harris, and RW Thimijan. 1993. Use of microwave- powered lamps as a new high intensity lamps source in plant growth chambers: Spectral characteristics. HortScience 28(5): 133. (Abstr 609)

    Google Scholar 

  • Kuboda S, T Yamato, T Hisamatsu, S Esaki, R Oi, MS Roh, and M Koshioka. 2000. Effects of red- and far-red-rich spectral treatments and diurnal temperature alternation on the growth and development of Petunia. J Jpn Soc Hort Sci 69:403–409.

    Article  Google Scholar 

  • Lawrence CH, and Barker, WG 1963. A study of tuberization in the potato,Solanum tuberosum. Am Potato J 40:349–356.

    Article  CAS  Google Scholar 

  • Leclerc Y, DJ Donnelly, and JEA Seabrook. 1994. Microtuberization of layered shoots and nodal cuttings of potato: The influence of growth regulators and incubation periods. Plant Cell Tiss Org Cult 37:113–120.

    Article  CAS  Google Scholar 

  • Lentini Z, and ED Earle. 1991.In vitro tuberization of potato clones from different maturity groups. Plant Cell Rep 9:691–695.

    Article  Google Scholar 

  • Lercari B, S Moscatelli, E Ghirardi, R Niceforo, and L Bertram. 1999. Photomorphogenic control of shoot regeneration from etiolated and light-grown hypocotyls of tomato. Plant Sci 140:53–61.

    Article  CAS  Google Scholar 

  • Levy D, JEA Seabrook, and S Coleman. 1993. Enhancement of tuberization of axillary shoot buds of potato (Solanum tuberosum) cultivars culturedin vitro. J Exp Bot 44:381–386.

    Article  CAS  Google Scholar 

  • Lindsay GC. 1987.In vitro improvement of potatoes: the New Zealand approach.In: YPS Bajaj (ed), Biotechnology in Agriculture and Forestry 3—Potato. Springer-Verlag, New York. pp 51–61.

    Google Scholar 

  • Lippmann B, R Mascher, C Balko, and H Bergmann. 2000. UV induction of trans-resveratrol biosynthesis in the leaves of greenhouse-andin vitro grown potatoes (Solanum tuberosum L.). J Appl Biol 74:160–163.

    CAS  Google Scholar 

  • Marks TR, and SE Simpson. 1999. Effect of irradiance on shoot developmentin vitro. Plant Growth Regul 28:133–142.

    Article  CAS  Google Scholar 

  • Martínez-García JF, JL García-Martínez, J Bou, and S Prat. 2002. The interaction of gibberellins and photoperiod in the control of potato tuberization. J Plant Growth Reg. 20:377–386.

    Google Scholar 

  • McCree KJ. 1972. The action spectrum, absorbance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191–216.

    Article  Google Scholar 

  • Mellor FC, and R Stace-Smith. 1987. Virus-free potatoes through meristem culture.In: YPS Bajaj (ed), Biotechnology in Agriculture and Forestry 3—Potato. Springer-Verlag, New York. pp 30–39.

    Google Scholar 

  • Mendoza HA, and FL Haynes. 1977. Inheritance of tuber initiation in tuber bearingSolanum as influenced by photoperiod. Am Potato J 54:243–252.

    Article  Google Scholar 

  • Miyashita Y, T Kimura, Y Kitaya, and T Kozai. 1994. Effects of red and far-red light on the growth and morphology of potato plantletsin vitro: using light emitting diode (LED) as a light source for tissue culture. XXIV Intl Hort Congr. 21–27 Aug 1994. Kyoto, Japan. p 570 (Abstr).

  • Miyashita Y, T Kimura, Y Kitaya, and T Kozai. 1997. Effects of red light on the growth and morphology of potato plantletsin vitro: using light emitting diodes (LEDs) as a light source for micro-propagation. Acta Hort 418:169–173.

    Google Scholar 

  • Miyashita Y, Y Kitaya, T Kozai, and T Kimura. 1995. Effects of red and far-red light on the growth and morphology of potato plantletsin vitro: using light emitting diode as a light source for micropropagation. Intl Symp on Environmental Control in Plant Tissure Culture. Acta Hort (Wageningen) 393:710–715.

    Google Scholar 

  • Mortensen LM, and E Stromme. 1987. Effects of light quality on some greenhouse crops. Sci Hort 33:27–36.

    Article  Google Scholar 

  • Muleo R, S Morini, and S Casano. 2001. Photoregulation of growth and branching of plum shoots: physiological action of two photo-systems. In Vitro Cell Dev Biol Plant 37:609–617.

    Article  Google Scholar 

  • Murakami K, K Horaguchi, M Morita, H Shibata, and I Aiga. 1992. Fundamental studies on the development of new fluorescent lamps for plant growth. Acta Hort (Wageningen) 319:329–334.

    Google Scholar 

  • Murakishi HH, and RR Harris. 1987. Testing somaclonal variants of potato for resistance to virus disease.In: YPS Bajaj (ed), Biotechnology in Agriculture and Forestry 3—Potato. Springer-Verlag New York. pp 332–345.

    Google Scholar 

  • Murashige T. 1977. Clonal crops through tissue culture.In: W Barz, Reinhard and MH Zenk (eds), Plant Tissue Culture and Its Biotechnological Application. Springer-Verlag, Berlin. pp 392–403.

    Google Scholar 

  • Murashige T, and F Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Naik PS, and D Sarkar. 1997. Influence of light-induced greening on storage of potato microtuber. Biol Plant (Prague) 39:31–34.

    Article  Google Scholar 

  • Nissen SJ, and EG Sutter. 1990. Stability of IAA and IBA in nutrient medium to several tissue culture procedures. HortScience 25:800–802.

    CAS  Google Scholar 

  • Niu G, T Kozai, M Hayahi, and M Tateno. 1997. Time course simulations of CO2 concentration and net photosynthetic rates of potato plantlets cultured under different lighting regimes. Am Soc Agric Eng 40:1711–1718.

    Google Scholar 

  • Norton CR, ME Norton, and T Herrington. 1988. Light quality and the control of shoot length in woody ornamental plants grownin vitro. Acta Hort (Wageningen) 227:453–456.

    Google Scholar 

  • Novák FJ, and J Zadina. 1987. In vitro propagation of potato—Progress in Czechoslavakia.In: YPS Bajaj (ed), Biotechnology in Agriculture and Forestry 3—Potato. Springer-Verlag, New York. pp 23–29.

    Google Scholar 

  • Okamoto K, T Yanagi, S Takita, M Tanka, T Higuchi, Y Ushida, H Watanabe, K Tozai, C Kubota, K Fujiwara, Y Ibaraki, and S Sase. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Intl Symp on Plant Production in Closed Ecosystems. Acta Hort (Wageningen) 440:111–116.

    CAS  Google Scholar 

  • Pelacho AM, L Martin-Closas, C Campabadal, A Torres, I Farran and AM Mingo-Castel. 1994.In vitro tuberization of potato: Effect of several morphogenic regulators in light and darkness.J Plant Physiol 144:705–709.

    CAS  Google Scholar 

  • Pelacho AM, and AM Mingo-Castel. 1991. Effects of photoperiod on kinetin-induced tuberization of isolated potato stolons culturedin vitro. Am Potato J 68:533–541.

    Article  Google Scholar 

  • Pennazio S, and P Redolfi. 1973. Factors affecting culture ofin vitro of potato meristem tips. Potato Res 16:20–29.

    Article  CAS  Google Scholar 

  • Perez-Ponce JN, M Suarez-Castella, and P Orellana-Perez. 2000. Possibilities and potential of the massive propagation of plants in Cuba. Biotechnologia-Vegetal. 1:3–11.

    Google Scholar 

  • Pinker IM. 2002. Chopper-light for shoot cultures. Application of Biotechnology and Molecular Biology and Breeding—In Vitro Culture. XXV Intl Hort Cong. Part 10. Acta Hort (Wageningen) 520:195–202.

    Google Scholar 

  • Posthumus AC. 1971. Auxins.In: J van Bragt, DAA Mossel, RLM Pierik and H Veldstra (eds), Effects of Sterilization on Components in Nutrient Media. H. Veenman & NV Zonen. Wageningen, The Nethelrands. pp 125–128.

    Google Scholar 

  • Pruski K, T Astatkie, M Mirza, and J Nowak. 2002. Photoautotrophic miropropagation of Russet Burbank potato. Plant Cell Tiss Org Cult 69:197–200.

    Article  Google Scholar 

  • Pruski K, T Kozai, T Lewis, T Astatki, and J Nowak. 2000. Sucrose and light effects onin vitro cultures of potato, chokecherry and Saskatoon berry during low temperature storage. Plant Cell Tiss Org Cult 63:215–221.

    Article  CAS  Google Scholar 

  • Rangarajan A, and TW Tibbitts. 1994. Exposure with far-red radiation for control of oedema injury on “Yale” ivy geranium. HortScience 29:38–40.

    Google Scholar 

  • Rudnicki RM, T Fjeld and R Moe. 1993. Effect of light quality on ethylene formation in leaf and petal discs ofBegonia XHiemalis Fotsch sc. Schwabenland Red. Plant Growth Reg 13:281–286.

    Article  CAS  Google Scholar 

  • Sager JS, and W Giger. 1980. Re-evaluation of published data on the relative photosynthetic efficiency of intermittent and continuous light. Agric Meteorol 22:289–302.

    Article  Google Scholar 

  • Sager JC, and JC McFarlane. 1997. Radiation.In: RW Langhans and TW Tibbitts (eds), Plant Growth Chamber Handbook. Iowa State University (North Central Regional Research Publication No. 340), Ames, IA.

  • Sarkar D, PS Naik, and R Chandra. 1996. Effect of different light sources on potato micropropagation. J Indian Potato Assoc 23:8–14.

    Google Scholar 

  • Schilde-Rentscher L, and PE Schmiediche. 1984. Tissue culture: past, present and future. CIP Circular 12:1–6. International Potato Centre, Lima, Peru.

    Google Scholar 

  • Seabrook JEA. 1987. Changing the growth and morphology of potato plantlets by varying the illumination source. Intl Symp In Vitro Problems Related to Mass Propagation. Gembloux, Belgium, Sept 16–20, 1985. Acta Hort (Wageningen) 212:401–410.

    Google Scholar 

  • Seabrook JEA, S Coleman, and D Levy. 1993. Effect of photoperiod onin vitro tuberization of potato (Solanum tuberosum L.). Plant Cell Tiss Org Cult 34:43–51.

    Article  Google Scholar 

  • Seabrook JEA, and LK Douglass. 1998. Prevention of stem growth inhibition and alleviation of intumescence formation in potato plantletsin vitro by yellow filters. Amer J Potato Res 75:219–224.

    Google Scholar 

  • Seabrook JEA, JE Percy, LK Douglass, and GCC Tai. 1995. Photoperiodin vitro affects subsequent yield of greenhouse-grown potato tubers. Am Potato J 72:365–373.

    Article  Google Scholar 

  • Sergeeva LI, I Machákova, TN Konstaninova, SA Golyanovska, J Eder, OO Zaltman, J Hanus, and NP Aksenova. 1994. Morphogenesis of potato plantsin vitro. II. Endogenous levels, distribution, and metabolism of IAA and cytokinins. J Plant Growth Reg 13:147–152.

    Article  CAS  Google Scholar 

  • Smith RH. 1992. Plant Tissue Culture: Techniques and Experiments. Academic Press, New York.

    Google Scholar 

  • Stasinopoulos TC, and RP Hangarter. 1990. Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol 93:1365–1369.

    Article  PubMed  CAS  Google Scholar 

  • Steffen KL, and JP Palta. 1989. Growth and development temperature influences level of tolerance to high light stress. Plant Physiol 91:1558–1561.

    Article  PubMed  CAS  Google Scholar 

  • Struik PC, and SG Wiersema. 1999. Seed Potato Technology. Wageningen Pers, The Netherlands.

    Google Scholar 

  • Stutte GW, NC Yorio, and RM Wheeler. 1996. Interacting effects of photoperiod and photosynthetic photon flux on net carbon assimilation and starch accumulation in potato leaves. J Am Soc Hort Sci 121:264–268.

    CAS  Google Scholar 

  • Tábori KM, J Dobránski, and A Ferenczy. 2000. Post-effects of light conditions on dormancy of potato microtubers. Acta Agron Hung 48:127–132.

    Article  Google Scholar 

  • Tanaka M, M Ikeda, S Fukai, and M Goi. 1992. Effect of different films used for film culture vessels on plantlet development ofPhalaenopsis andCymbidium. Acta Hort (Wageningen) 319:225–230.

    Google Scholar 

  • Tantau H-J. 1997. Technical and energetic aspects of artificial lighting.In: T Blacuière and H Gude (eds), Proc. 3rd Intl Symp Artificial Lighting. Acta Hort (Wageningen) 418:177–188.

    Google Scholar 

  • Tao GQ, WY Yin, GP Gong, and C Cheng. 1987.In vitro production and release of potato varieties in China.In: YPS Bajaj Biotechnology in Agriculture and Forestry 3—Potato. Springer-Verlag, New York. pp 62–79.

    Google Scholar 

  • Tarn RT, GCC Tai, H De Jong, AM Murphy, and JEA Seabrook. 1992. Breeding potatoes for long-day, temperate climates. Plant Breed Rev. 9:217–332.

    Google Scholar 

  • Thimijan RW, and RD Heins. 1983. Photometric, radiometric, and quantum light units of measure: A review of procedures for interconversion. HortScience 18:818–822.

    Google Scholar 

  • Tsekleev G, N Boyadjieva, Y Solakov, and M Tabakova. 1992. Influence of photo-selective mulch films on tomatoes in greenhouses. Plasticulture (France) 95:45–49.

    Google Scholar 

  • Tucker, DJ. 1975. Far-red light as a suppressor of side shoot growth in the tomato. Plant Sci Lett 5:127–130.

    Article  Google Scholar 

  • Tucker DJ. 1976. Effects of far-red light on the hormonal control of side shoot growth in the tomato. Ann Bot 40:1033–1042.

    CAS  Google Scholar 

  • Van Haeringen C, J Davis, FJ West, A Gilbert, P Hadley, S Peason, AE Weheldon, and RGC Henbest. 1998. The development of spectral solid filters for the regulation of plant growth. Photochem Photobiol 67:407–413.

    Google Scholar 

  • Veramendi J, V Sota, A Fernandez-San-Millan, MJ Villafranca, L Martin-Closas, AM Pelacho, and AM Mingo-Castel. 2000. Anin vitro tuberization bioassay to assess maturity of new potato clones. J Hort Sci Biotech 75:733–738.

    Google Scholar 

  • Vince-Prue D. 1994. Photomorphogenesis and plant development.In: PJ Lumsden, JR Nicholas and WJ Davies (eds), Physiology, Growth and Development of Plants in Culture. Kluwer Academic Publishers, Dordrect. pp 19–30.

    Google Scholar 

  • Wang PJ, and CY Hu. 1985. Potato tissue culture and its applications in agriculture.In: PH Li (ed), Potato Physiology. Academic Press, New York. pp 503–577.

    Google Scholar 

  • Wescott RJ, GG Henshaw, BWW Grout, and WM Roca. 1977. Tissue culture methods and germplasm storage in potato. Acta Hort 78:45–49.

    Google Scholar 

  • Wheeler RM. 2002. Horticulture and Mars missions. Colloquium 6, Mission to Mars: challenges and opportunities for plant science. XXVI Intl Hort Cong, Toronto, ON, Canada, 11–17 Aug 2002.

  • White JW, and IJ Warrington. 1984. Growth and development responses of geranium to temperature, light integral, CO2, and chlormequat. J Am Soc Hort Sci 109:728–735.

    CAS  Google Scholar 

  • Wilson DA, RC Weigel, RM Wheeler, and JC Sager. 1993. Light spectral quality effects on the growth of potato (Solanum tuberosum L.) nodal cuttings in vitro. In Vitro Cell Dev Biol 29:5–8.

    Article  Google Scholar 

  • Wolf S, N Kalman-Rotem, D Yakir and M Ziv. 1998. Autotrophic and heterotrophic carbon assimilation ofin vitro-grown potato (Solanum tuberosum L) plants. J Plant Physiol 153:574–580.

    CAS  Google Scholar 

  • Yamakawa T, O Kurahahi, K Ishida, S Kato, T Kodama, and Y Minoda. 1979. Stability of indole acetic acid to autoclaving, aeration and light illumination. Agric Biolog Chem J 43:879–880.

    CAS  Google Scholar 

  • Yanofsky MJ, M Izaguirre, JA Wagmaister, C Gatz, SD Jackson, B Thomas, and JJ Casal. 2000. Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant J 23:223–232.

    Article  Google Scholar 

  • Zambre M, N Terryn, J De Clerq, S De Buck, W Dillen, M Van Montagu, D Van der Straeten, and G Angenon. 2003. Light strongly promotes gene transfer fromAgrobacterium tumefaciens to plant cells. Planta 216:580–586.

    PubMed  CAS  Google Scholar 

  • Zobayed SMA, F Afreen-Zobayed, C Kubota, and T Kozai. 1999. Stomatal characteristics and leaf anatomy of potato plantlets culturedin vitro under photoautotrophic and photomixotrophic conditions. In Vitro Cell Dev Biol Plant 35:183–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet E. A. Seabrook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seabrook, J.E.A. Light effects on the growth and morphogenesis of potato(Solanum tuberosum) in vitro: A review. Am. J. Pot Res 82, 353–367 (2005). https://doi.org/10.1007/BF02871966

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02871966

Additional key words

Navigation