Skip to main content
Log in

Dynamics of leaf litter accumulation and its effects on riparian vegetation: A review

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The total production of plant litter and the proportion of leaf litter are higher in riparian corridors than in upland ecosystems throughout the world. Periodical water-level fluctuation is believed to be the major cause of these differences. During flood periods, much plant litter is redistributed locally and between regions, following erosion, transport, and deposition of litter. The importance of litter redistribution varies with factors such as flood regime, topography, and vegetation. Litter from the riparian corridor is usually a major constituent of the litter transported by the river. The decomposition of litter is faster in riparian corridors than in upland systems due to a higher rate of leaching and a higher decomposer activity. Relative warmth and soil fertility may also enhance litter decomposition in riparian corridors. In general, accumulated litter affects plants physically by burying them, chemically by adding nutrients and phytotoxins, and biologically by adding diaspores. The physical impact of a certain amount of litter may be weaker in riparian corridors than in uplands because the rapid decomposition reduces the time that litter is present. In other words, higher amounts of litter are needed to affect riparian vegetation than are needed to affect other types of vegetation. The nutrient content of riverborne litter is reduced by leaching, but dissolved nutrients from litter might still reach the riparian vegetation, e.g., by adsorbing to inorganic particles. Phytotoxins are probably unimportant in riparian systems. The input to the riparian corridor of plant diaspores, borne by litter packs in the river, may be large. Indirect biological effects of litter, including its diaspores, are the attracting of animals and microbes that may influence the plant community, and the creation of bare soil for plant colonization.

Résumé

La production totale de litière et la proportion de litières de feuilles sont plus importantes dans les ripisylves que dans les autres écosystèmes terrestres de par le monde. Les fluctuations périodiques du niveau de l’eau sont supposées être la cause majeure de ces différences. Durant les périodes de crue, la majeure partie des litières végétales est redistribuée, soit localement, soit régionalement par le biais de processus d’érosion, de transport et de dépôts de crue. L’importance de la redistribution de la litière est variable; elle est fonction du régime des crues, de la topographie et de la végétation. La litière provenant de la végétation riveraine est généralement le constituant majeur de la litière transportée par les cours d’eau. La décomposition des litières est plus rapide dans les ripisylves que dans les écosystèmes terrestres. Ceci est dû à un plus fort taux de lessivage et à une activité de décomposition plus importante dans les sols des ripisylves. La fertilité des sols alluviaux relativement supérieure à celle des sols des autres écosystèmes terrestres ainsi que leur température relativement plus élevée peuvent aussi augmenter la vitesse de décomposition des litières dans les corridors riverains. En général, l’accumulation de litières affecte le développement de la végétation, et ce de plusieurs manières: physiquement par enfouissement, chimiquement par l’ajout de substances nutritives et de phyto-toxines, et biologiquement par l’apport de diaspores. L’impact physique d’un apport de litières peut être moindre dans les corridors riverains que dans les autres écosystèmes terrestres à cause de la rapide décomposition de la litière qui réduit son temps de présence sur le site. En d’autres termes, dans les ripisylves, des quantités de litières plus importantes que dans les autres écosystèmes terrestres sont nécessaires pour affecter le développement de la végétation. La teneur en nutriments des litières de ripisylves est réduite par l’effet du lessivage; cependant des substances nutritives peuvent néanmoins être fournies à la végétation riveraine, par le biais d’adsorption sur des dépôts de sédiments de crue par exemple. Les phyto-toxines sont probablement peu importantes dans les systèmes riverains. Par contre l’apport de diaspores de plantes véhiculés avec la litière dans les cours d’eau peut être très importante. L’effet biologique indirect des litières comprenant ces diaspores concerne leur capacité d’attraction des animaux et des micro-organismes qui peuvent en retour affecter les communautés végétales et créer des trouées de sols nus permettant une nouvelle colonisation végétale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abbott, D. T. &D. A. Crossley. 1982. Woody litter decomposition following clear-cutting. Ecology63: 35–42.

    Article  Google Scholar 

  • Aber, J. D. &J. M. Melillo. 1980. Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Canad. J. Bot.58: 416–421.

    CAS  Google Scholar 

  • Adis, J., K. Furch &U. Irmler. 1979. Litter production of a Central-Amazonian black water inundation forest. Trop. Ecol.20: 236–245.

    Google Scholar 

  • Alvarez-Lopez, M. 1990. Ecology ofPterocarpus officinalis forested wetlands in Puerto Rico. Pages 251–265in A. E. Lugo, M. M. Brinson & S. Brown (eds.), Forested wetlands. Ecosystems of the World 15. Elsevier, Amsterdam.

    Google Scholar 

  • Anderson, N. H. &J. R. Sedell. 1979. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Entomol.24: 351–377.

    Article  Google Scholar 

  • Barrett, L. I. 1931. Influence of forest litter on the germination and early survival of chestnut oak,Quercus montana. Ecology12: 476–487.

    Article  Google Scholar 

  • Beatty, S. W. &O. D. V. Sholes. 1988. Leaf litter effects on plant species composition of deciduous forest treefall pits. Canad. J. Forest Res.18: 553–559.

    Article  Google Scholar 

  • Bell, D. T., F. L. Johnson &A. R. Gilmore. 1978. Dynamics of litterfall, decomposition, and incorporation in the streamside forest ecosystem. Oikos30: 76–82.

    Article  Google Scholar 

  • Berendse, F. 1994. Litter decomposability—a neglected component of plant fitness. J. Ecol.82: 187–190.

    Article  Google Scholar 

  • Berg, B., M. P. Berg, P. Bottner, E. Box, A. Breymeyer, R. Calvo de Anta, M. Couteaux, A. Escudero, A. Gallardo, W. Kratz, M. Madeira, E. Mälkönen, C. McClaugherty, V. Meentemeyer, F. Muñoz, P. Piussi, J. Remacle &A. Virzo de Santo. 1993. Litter mass loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry20:127–159.

    Article  Google Scholar 

  • Bird, G. A. &N. K. Kaushik. 1981. Coarse paniculate organic matter in streams. Pages 41–68in M. A. Lock & D. D. Williams (eds.), Perspectives in running water ecology. Plenum, New York.

    Google Scholar 

  • Blackburn, W. M. &T. Petr. 1979. Forest litter decomposition and benthos in a mountain stream in Victoria Australia. Arch. Hydrobiol.86:453–498.

    CAS  Google Scholar 

  • Boling, R. H., E. D. Goodman, J. A. Van Sickle, J. O. Zimmer, K. W. Cummins, R. C. Petersen &S. R. Reice. 1975. Towards a model of detritus processing in a woodland stream. Ecology56: 141–151.

    Article  Google Scholar 

  • Bray, J. R. &E. Gorham. 1964. Litter production in forests of the world. Adv. Ecol. Res.2: 101–158.

    Google Scholar 

  • Brinson, M. M. 1990. Riverine forests. Pages 87–141in A. E. Lugo, M. M. Brinson & S. Brown (eds.), Forested wetlands. Ecosystems of the World 15. Elsevier, Amsterdam.

    Google Scholar 

  • —,H. D. Bradshaw, R. N. Holmes &J. B. Elkins. 1980. Litterfall, stemflow, and throughfall nutrient fluxes in an alluvial swamp forest. Ecology61: 827–835.

    Article  CAS  Google Scholar 

  • Brown, S. 1981. A comparison of structure, primary productivity, and transpiration of cypress ecosystems in Florida. Ecol. Monogr.51: 403–427.

    Article  Google Scholar 

  • — &D. L. Peterson. 1983. Structural characteristics and biomass production of two Illinois bottomland forests. Amer. Midl. Naturalist110: 107–117.

    Article  Google Scholar 

  • Carson, W. P. &C. J. Peterson. 1990. The role of litter in an oldfield community: impact of litter quantity in different seasons on plant species richness and abundance. Oecologia85: 8–13.

    Article  Google Scholar 

  • Chauvet, E. 1988. Influence of the environment on willow leaf litter decomposition in the alluvial corridor of the Garonne River. Arch. Hydrobiol.112: 371–386.

    Google Scholar 

  • — &A. M. Jean-Louis. 1988. Production de litière de la ripisylve de la Garonne et apport au fleuve. Oecol. Gener.9: 265–279.

    Google Scholar 

  • — &H. Décamps. 1989. Lateral interactions in a fluvial landscape: the river Garonne, France. J. N. Amer. Benthol. Soc.8: 9–17.

    Article  Google Scholar 

  • Cheplick, G. P. &J. A. Quinn. 1987. The role of seed depth, litter, and fire in the seedling establishment of amphicarpic peanut-grass (Amphicarpum purshii). Oecologia73: 459–463.

    Article  Google Scholar 

  • Collins, S. L. &R. E. Good. 1987. The seedling regeneration niche: habitat structure of tree seedlings in an oak-pine forest. Oikos48: 89–98.

    Article  Google Scholar 

  • Conner, W. H. &J. W. Day. 1976. Productivity and composition of a baldcypress-water tupelo site and a bottomland hardwood site in a Louisiana swamp. Amer. J. Bot.63: 1354–1364.

    Article  Google Scholar 

  • —,J. G. Gosselink &R. T. Parrondo. 1981. Comparison of the vegetation of three Louisiana swamp sites with different flooding regimes. Amer. J. Bot.68: 320–331.

    Article  Google Scholar 

  • Conners, M. E. &R. J. Naiman. 1984. Particulate allochthonous input: relationship with stream size in an undisturbed watershed. Canad. J. Fish. Aquatic Sci.41: 1473–1484.

    Google Scholar 

  • Cowan, C. A. &M. W. Oswood. 1983. Input and storage of benthic detritus in an Alaskan subarctic stream. Polar Biol.2: 35–40.

    Article  Google Scholar 

  • Cromack, K. &C. D. Monk. 1975. Litter production, decomposition and nutrient cycling in a mixed hardwood watershed and a white pine watershed. Pages 609–624in F. G. Howell, J. B. Gentry & M. H. Smith (eds.), Mineral cycling in south-eastern ecosystems. Energy Research and Development Administration Symposium Series, CONF-470513, Washington, DC.

    Google Scholar 

  • Cuffney, T. F. 1988. Input, movement and exchange of organic matter within a subtropical coastal black-water river-floodplain system. Freshwat. Biol.19: 305–320.

    Article  Google Scholar 

  • Cummins, K. W., J. R. Sedell, F. J. Swanson, G. W. Minshall, S. G. Fisher, C. E. Cushing, R. C. Petersen &R. L. Vannote. 1983. Organic matter budgets for stream ecosystems: problems in their evaluation. Pages 299–353in J. R. Barnes & G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York.

    Google Scholar 

  • Dance, K. W. 1981. Seasonal aspects of transport of organic and inorganic matter in streams. Pages 69–95in M. A. Lock & D. D. Williams (eds.), Perspectives in running water ecology. Plenum Press, New York.

    Google Scholar 

  • Davis, C. B. &A. G. van der Valk. 1978. Litter decomposition in prairie glacial marshes. Pages 99–113in R. E. Good, D. F. Whighham & R. L. Simpson (eds.), Freshwater wetlands. Academic Press, New York.

    Google Scholar 

  • Dawson, F. H. 1976. Organic contribution of stream edge forest litter fall to the chalk stream ecosystem. Oikos27: 13–18.

    Article  CAS  Google Scholar 

  • Day, F. P. 1982. Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology63: 670–678.

    Article  CAS  Google Scholar 

  • —. 1983. Effects of flooding on litter decomposition in microcosms. Oecologia56:180–184.

    Article  Google Scholar 

  • de Jong, T. J. &P. G. L. Klinkhamer. 1985. The negative effect of litter of parent plants ofCirsium vulgare to their offsprings: autotoxicity or immobilization? Oecologia65: 153–160.

    Article  Google Scholar 

  • de la Cruz, A. A. &H. A. Post. 1977. Production and transport of organic matter in a woodland stream. Arch. Hydrobiol.80: 227–238.

    Google Scholar 

  • Dolph, J., D. Marks &G. A. King. 1992. Sensitivity of the regional water balance in the Columbia River basin to climate variability: application of a spatially distributed water balance model. Pages 233–265in R. J. Naiman (ed.), Watershed management. Springer-Verlag, New York.

    Google Scholar 

  • Dynesius, M. &C. Nilsson. 1994. Fragmentation and flow regulation of river systems in the northern third of the world. Science266: 753–762.

    Article  PubMed  CAS  Google Scholar 

  • Elder, J. F. &D. J. Cairns. 1982. Production and decomposition of forest litter fall on the Apalachicola river flood plain, Florida. U.S. Geol. Surv. Water-Supply Paper 2196-B. Government Printing Office, Washington, DC.

    Google Scholar 

  • Facelli, J. M. 1994. Multiple indirect effects of plant litter affect the establishment of woody seedlings in oldfields. Ecology75: 1727–1735.

    Article  Google Scholar 

  • — &W. P. Carson. 1991. Heterogeneity of litter accumulation in oldfields. Bull. Torrey Bot. Club118: 62–66.

    Article  Google Scholar 

  • — &E. Facelli. 1993. Interactions after death: plant litter controls priority effects in a successional plant community. Oecologia95: 277–282.

    Article  Google Scholar 

  • — &S. T. A. Pickett. 1991a. Plant litter: its dynamics and effects on plant community structure. Bot. Rev. (Lancaster)57: 1–32.

    Google Scholar 

  • ——. 1991b. Plant litter: light interception and effects on an oldfield plant community. Ecology72:1024–1031.

    Article  Google Scholar 

  • ——. 1991c. Indirect effects of litter on woody seedlings subject to herb competition. Oikos62:129–138.

    Article  Google Scholar 

  • —,C. M. Montero &R. J. C. León. 1988. Effect of different disturbance regimen on seminatural grasslands from the subhumid Pampa. Flora180: 241–249.

    Google Scholar 

  • Fisher, S. G. 1977. Organic matter processing by a stream-segment ecosystem: Fort River, Massachusetts, U.S.A. Intl. Rev. Ges. Hydrobiol.62: 701–727.

    Google Scholar 

  • — &G. W. Likens. 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol. Monogr.43: 421–439.

    Article  Google Scholar 

  • Fowler, N. L. 1986. Microsite requirements for germination and establishment of three grass species. Amer. Midl. Naturalist115:131–145.

    Article  Google Scholar 

  • — 1988. What is a safe site?: neighbor, litter, germination date, and patch effects. Ecology69: 947–961.

    Article  Google Scholar 

  • Frangi, J. L. &A. E. Lugo. 1985. Ecosystem dynamics of a subtropical floodplain forest. Ecol. Monogr.55: 351–369.

    Article  Google Scholar 

  • Franken, M., V. Irmler &H. Klinge. 1979. Litterfall in inundation, riverine, and terra firma forests of central Amazonia. Trop. Ecol.20: 225–235.

    Google Scholar 

  • Gessner, M. O. &E. Chauvet. 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology75:1807–1817.

    Article  Google Scholar 

  • —,M. Thomas, A. Jean-Louis &E. Chauvet. 1993. Stable successional patterns of aquatic hyphomycetes on leaves decaying in a summer cool stream. Mycol. Res.97: 163–172.

    Google Scholar 

  • Goldberg, D. E. &P. A. Werner. 1983. The effects of size of opening in vegetation and litter cover on seedling establishment of goldenrods (Solidago spp.). Oecologia60:149–155.

    Article  Google Scholar 

  • Gomez, M. M. &F. P. Day. 1982. Litter nutrient content and production in the Great Dismal Swamp. Amer. J. Bot.69: 1314–1321.

    Article  CAS  Google Scholar 

  • Gosz, J. F., G. E. Likens &F. H. Bormann. 1972. Nutrient content of litter fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology53: 769–784.

    Article  CAS  Google Scholar 

  • Grime, J. P. 1979. Plant strategies and vegetation processes. John Wiley & Sons, New York.

    Google Scholar 

  • Gurtz, M. E., G. R. Marzolf, K. T. Killingbeck, D. L. Smith &J. V. McArthur. 1988. Hydrologic and riparian influences on the import and storage of coarse paniculate organic matter in a prairie stream. Canad. J. Fish. Aquatic Sci.45: 655–665.

    Article  Google Scholar 

  • Hamrick, J. L. &J. M. Lee. 1987. Effects of soil surface topography and litter cover on germination, survival and growth of musk thistle (Carduus nutans). Amer. J. Bot.74: 451–457.

    Article  Google Scholar 

  • Hardin, E. D. &W. A. Wistendahl. 1983. The effects of floodplain trees on herbaceous vegetation patterns, microtopography and litter. Bull. Torrey Bot. Club110: 23–30.

    Article  Google Scholar 

  • Haslam, S. M. 1971a. Community regulation inPhragmites communis Trin. I. Monodominant stands. J. Ecol.59: 65–73.

    Article  Google Scholar 

  • —. 1971b. Community regulation inPhragmites communis Trin. II. Mixed stands. J. Ecol.59: 75–88.

    Google Scholar 

  • Heady, H. F. 1956. Changes in the central California annual plant community induced by the manipulation of natural mulch. Ecology37: 798–811.

    Article  Google Scholar 

  • Holland, E. A. &D. C. Coleman. 1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology68:425–433.

    Article  Google Scholar 

  • Hughes, M. 1971. Tree biocontent, net production and litter fall in a deciduous woodland. Oikos22: 62–73.

    Article  Google Scholar 

  • Iversen, T. M., J. Thorup &J. Skriver. 1982. Inputs and transformation of allochthonous particulate organic matter in a headwater stream. Holarct. Ecol.5:10–19.

    Google Scholar 

  • Johansson, M. E. &C. Nilsson. 1993. Hydrochory, population dynamics and distribution of the clonal aquatic plantRanunculus lingua. J. Ecol.81: 81–91.

    Article  Google Scholar 

  • Jordan, C. F. 1971. A world pattern in plant energetics. Amer. Sci.59: 426–433.

    Google Scholar 

  • Jordan, T. E., D. F. Whigham &D. L. Correll. 1989. The role of litter in nutrient cycling in a brackish tidal marsh. Ecology70:1906–1915.

    Article  Google Scholar 

  • Junk, W. J., P. R. Bayley &R. E. Spark. 1989. The flood pulse concept in river floodplain systems. Canad. Spec. Publ. Fish. Aquatic Sci.106:110–127.

    Google Scholar 

  • Keller, E. A. &F. J. Swanson. 1979. Effects of large organic material on channel form and fluvial processes. Earth Surf. Proc.4: 361–380.

    Article  Google Scholar 

  • Kellman, M. 1979. Soil enrichment by neotropical savanna trees. J. Ecol.67: 565–577.

    Article  CAS  Google Scholar 

  • Killingbeck, K. T. 1986. Litterfall dynamics and element use efficiency in a Kansas gallery forest. Amer. Midl. Naturalist116:180–189.

    Article  CAS  Google Scholar 

  • —&M. K. Wali. 1978. Analysis of aNorth Dakota gallery forest: nutrient, trace element and productivity relations. Oikos30: 29–60.

    Article  CAS  Google Scholar 

  • Knapp, A. K. &T. R. Seastedt. 1986. Detritus accumulation limits productivity of tallgrass prairie. BioScience36: 622–668.

    Article  Google Scholar 

  • Leishman, M. R. &M. Westoby. 1994. The role of large seed size in shaded conditions: experimental evidence. Fund. Ecol.8: 205–214.

    Article  Google Scholar 

  • Malanson, G. P. 1993. Riparian landscapes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mayack, D. T., J. H. Thorp &M. Cothran. 1989. Effects of burial and floodplain retention on stream processing of allochthonous litter. Oikos54: 378–388.

    Article  Google Scholar 

  • Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology59: 465–472.

    Article  CAS  Google Scholar 

  • —,E. O. Box &R. Thompson. 1982. World patterns and amounts of terrestrial plant litter production. BioScience32:125–128.

    Article  Google Scholar 

  • Merritt, R. W. &D. L. Lawson. 1980. Leaf litter processing in floodplain and stream communities. U.S.D.A. Forest Serv. Gen. Techn. Rep. WO-12: 93–105.

    Google Scholar 

  • Molofsky, J. &C. K. Augspurger. 1992. The effects of leaf litter on early seedling establishment in a tropical forest. Ecology73: 68–77.

    Article  Google Scholar 

  • Monk, C. D. &F. C. Gabrielson. 1985. Effects of shade, litter and root competition on old-field vegetation in South Carolina. Bull. Torrey Bot. Club112: 383–392.

    Article  Google Scholar 

  • Mulholland, P. J. 1981. Organic carbon flow in a swamp-stream ecosystem. Ecol. Monogr.51: 307–322.

    Article  CAS  Google Scholar 

  • Muzika, R. M., J. B. Gladden &J. D. Haddock. 1987. Structural and functional aspects of succession in south-eastern floodplain forests following a major disturbance. Amer. Midl. Naturalist117:1–9.

    Article  Google Scholar 

  • Myster, R. W. &S. T. A. Pickett. 1993. Effects of litter, distance, density and vegetation patch type on postdispersal tree seed predation in old fields. Oikos66: 381–388.

    Article  Google Scholar 

  • Naiman, R. J., H. Décamps &M. Pollock. 1993. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl.3: 209–212.

    Article  Google Scholar 

  • Neiff, J. J. &A. Poi de Neiff. 1990. Litterfall, leaf decomposition and litter colonisationof Tessaria integrifolia (Compositae) in the Parana river floodplain. Hydrobiologia203: 45–52.

    Article  Google Scholar 

  • Nilsson, C. &G. Grelsson. 1990. The effects of litter displacement on riverbank vegetation. Canad. J. Bot.68: 735–741.

    Google Scholar 

  • —,G. Grelsson, M. Dynesius, M. E. Johansson &U. Sperens. 1991a. Small rivers behave like large rivers: effects of postglacial history on plant species richness along riverbanks. J. Biogeogr.18: 533–541.

    Article  Google Scholar 

  • —,M. Gardfjell &G. Grelsson. 1991b. Importance of hydrochory in structuring plant communities along rivers. Canad. J. Bot.69: 2631–2633.

    Article  Google Scholar 

  • —,E. Nilsson, M. E. Johansson, M. Dynesius, G. Grelsson, S. Xiong, R. Jansson &M. Danvind. 1993. Processes structuring riparian vegetation. Pages 419–431in J. Menon (ed.), Current topics in botanical research. Council of Scientific Research Integration, Trivandrum.

    Google Scholar 

  • Odum, E. P. 1960. Organic production and turnover in old field succession. Ecology41: 34–49.

    Article  Google Scholar 

  • Otto, C. 1975. Energetic relationships of the larval population ofPotamophylax cingulatus (Trichoptera) in a south Swedish stream. Oikos26: 159–169.

    Article  Google Scholar 

  • Pastor, J., M. A. Stillwell &D. Tilman. 1987. Little bluestem litter dynamics in Minnesota oldfields. Oecologia72: 327–330.

    Article  Google Scholar 

  • Petersen, R. C. &K. W. Cummins. 1974. Leaf processing in a woodland stream ecosystem. Freshwat. Biol.4: 343–368.

    Article  Google Scholar 

  • —— &G. M. Ward. 1989. Microbial and animal processing of detritus in a woodland stream. Ecol. Monogr.59: 21–39.

    Article  Google Scholar 

  • Peterson, D. L. &G. L. Rolfe. 1982. Nutrient dynamics and decomposition of litterfall in floodplain and upland forests of central Illinois. Forest Sci.28: 667–681.

    Google Scholar 

  • Polunin, N. V. C. 1982. Processes contributing to the decay of reed (Phragmites australis) litter in fresh water. Arch. Hydrobiol.94:182–209.

    Google Scholar 

  • —. 1984. The decomposition of emergent macrophytes in fresh water. Adv. Ecol. Res.14: 115–166.

    Google Scholar 

  • Reice, S. R. 1974. Environmental patchiness and the breakdown of leaf litter in a woodland stream. Ecology55: 1271–1282.

    Article  Google Scholar 

  • Reiners, W. A. 1972. Structure and energetics of three Minnesota forests. Ecol. Monogr.42: 71–94.

    Article  Google Scholar 

  • Rice, E. L. 1979. Allelopathy: an update. Bot. Rev. (Lancaster)45:15–109.

    CAS  Google Scholar 

  • Schlesinger, W. H. 1978. Community structure, dynamics and nutrient cycling in the Okefenokee cypress swamp-forest. Ecol. Monogr.48: 43–65.

    Article  Google Scholar 

  • Shaw, M. W. 1968. Factors affecting the regeneration of sessile oak (Quercus petraea) in North Wales. II. Acorn losses and germination under field condition. J. Ecol.56:647–660.

    Article  Google Scholar 

  • Shure, D. J. &M. R. Gottschalk. 1985. Litter-fall patterns within a floodplain forest. Amer. Midl. Naturalist114: 98–111.

    Article  Google Scholar 

  • —— &K. A. Parsons. 1986. Litter decomposition processes in a floodplain forest. Amer. Midl. Naturalist115: 314–327.

    Article  CAS  Google Scholar 

  • Staaf, H. 1987. Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types. Oecologia72: 58–64.

    Article  Google Scholar 

  • Sydes, C. L. &J. P. Grime. 1981a. Effects of tree leaf litter on herbaceous vegetation in the deciduous woodlands. I. Field investigations. J. Ecol.69: 237–248.

    Article  Google Scholar 

  • —. 1981b. Effects of tree leaf litter on herbaceous vegetation in the deciduous woodlands. II. An experimental investigation. J. Ecol.69: 249–262.

    Article  Google Scholar 

  • Szczeponska, W. 1977. The effect of remains of helophytes on the growth ofPhragmites communis Trin. andTypha latifolia L. Ekol. Polska25: 437–445.

    Google Scholar 

  • Tao, D. L., Z. B. Xu &X. Li. 1987. Effect of litter layer on natural regeneration of companion tree species in the Korean pine forest. Environm. Exp. Bot.27: 53–65.

    Article  Google Scholar 

  • Tilman, D. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr.57: 189–214.

    Article  Google Scholar 

  • — &M. L. Cowan. 1989. Growth of old field herbs on a nitrogen gradient. Funct. Ecol.3: 425–438.

    Article  Google Scholar 

  • van der Valk, A. G. 1986. The impact of litter and annual plants on recruitment from the seed bank of a lacustrine wetland. Aquatic Bot.24: 13–26.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Shedell &C. E. Cushing. 1980. The river continuum concept. Canad. J. Fish. Aquatic Sci.37: 130–137.

    Article  Google Scholar 

  • Vasicek, F. 1985. Natural conditions of floodplain forests. Pages 13–29in M. Penka et al. (eds.), Floodplain forest ecosystem. I. Before water management measures. Elsevier, Amsterdam.

    Google Scholar 

  • Vitousek, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology65: 285–298.

    Article  CAS  Google Scholar 

  • Vogt, K. A., C. C. Grier &D. J. Vogt. 1986. Production, turnover, and nutrient dynamics of above- and below-ground detritus of world forests. Adv. Ecol. Res.15: 303–377.

    Google Scholar 

  • Ward, J. V. 1989. Riverine-wetland interactions. Pp. 385–400in R. R. Sharitz & J. W. Gibbons (eds.), Freshwater wetlands and wildlife. Office of Scientific and Technical Information, U.S. Dept. of Energy, Oak Ridge.

    Google Scholar 

  • Ward, H. A. &L. H. McCormick. 1982. Eastern hemlock allelopathy. Forest Sci.28: 681–686.

    Google Scholar 

  • Watt, A. S. 1974. Senescence and rejuvenation in ungrazed chalk grassland (grassland B) in Breckland: the significance of litter and moles. J. Appl. Ecol.11:1157–1171.

    Article  Google Scholar 

  • Weaver, J. E. &N. W. Rowland. 1952. Effect of excessive natural mulch on the development, yield, and structure of native grassland. Bot. Gaz.114:1–19.

    Article  Google Scholar 

  • Webster, J. R. 1975. Analysis of potassium and calcium dynamics in stream ecosystems on three southern Appalachian watersheds of contrasting vegetation. Ph.D. dissertation, University of Georgia, Athens.

    Google Scholar 

  • — &B. C. Patten. 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol. Monogr.49: 51–72.

    Article  CAS  Google Scholar 

  • Werner, P. A. 1975. The effect of plant litter on germination in teasel,Dipsacus sylvestris Huds. Amer. Midl. Naturalist94: 470–476.

    Article  Google Scholar 

  • West, N. E. 1979. Formation, distribution, and function of plant litter in desert ecosystems. Pp. 647–659in J. A. Perry & D. W. Goodall (eds.), Arid land ecosystems: structure, function, and management. Cambridge University Press, Cambridge.

    Google Scholar 

  • Whittaker, R. H. &G. M. Woodwell. 1969. Structure, production, and diversity of the oak-pine forest at Brookhaven, New York. J. Ecol.57: 155–174.

    Article  Google Scholar 

  • Williams, R. J. &D. H. Ashton. 1987. Effect of disturbance and grazing by cattle on the dynamics of heathland and grassland communities on the Bogong High Plains, Victoria. Austral. J. Bot.35: 413–431.

    Article  Google Scholar 

  • Wilson, S. D. &C. A. Zammit. 1992. Tree litter and the lower limits of subalpine herbs and grasses in the Brindabella Range, ACT. Austral. J. Ecol.17: 321–327.

    Article  Google Scholar 

  • Winterbourn, M. J. 1976. Fluxes of litter falling into a small beech forest stream. New Zealand J. Marsh Freshwat. Res.10: 399–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, S., Nilsson, C. Dynamics of leaf litter accumulation and its effects on riparian vegetation: A review. Bot. Rev 63, 240–264 (1997). https://doi.org/10.1007/BF02857951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857951

Keywords

Navigation