The Botanical Review

, Volume 59, Issue 3, pp 155–210 | Cite as

Competition and allelopathy in aquatic plant communities

  • Brij Gopal
  • Usha Goel


The paper reviews the published literature on the studies of competition and allelopathy in aquatic plant communities. Taking a broader view of the community, the studies on interactions between macrophytes and microphytes, macrophytes and macro-invertebrates and microbial communities are also reviewed. The role of these interactions in the structure and dynamics of aquatic communities has been discussed in light of the current hypotheses concerning competition in terrestrial communities. The available information suggests that the aquatic plants of various growth forms differ greatly among themselves in their responses and adaptations to competition and allelopathy. The possible application of these interactions in biological control of plant pests and in agriculture is also summarized.

We conclude that the observed differences in these interactions between the terrestrial and aquatic environment are due to the effects of water as a non-resource variable as well as due to special adaptive characteristics of aquatic plants. Further we hypothesize that the aquatic plants adopt both competitive and allelopathic strategies under different conditions and in interactions with different plants.

The review highlights that our knowledge of both competition and allelopathy among aquatic plant communities is inadequate and fragmentary, and therefore, both extensive and intensive studies are required.


Botanical Review Aquatic Plant Competitive Ability Aquatic Macrophyte Water Hyacinth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Dieser Artikel bespricht die über Studien zu Konkurrenz- und Allelopathieverhalten bei Wasserpflanzengeschaften veröffentlichte Literatur. In einem breiten Überblick über die Gesellschaft werden auch die Studien zu Interaktionen zwischen Makrophyten und Mikrophyten, Makrophyten und Makro-invertebraten und Mikro-bengemeinschaften erötert. Die Rolle dieser Interaktionen in der Struktur und Dynamik von Lebensgemeinschaften im Wasser wird im Licht aktueller Hypothesen zum Thema Konkurrenz bei Legensgemeinschaften auf dem Land diskutiert. Das vorhandenen Daten lassen vermuten, daß sich Wasserpflanzen verschiedener Wachstumsformen in ihrem Reaktions- und Anpassungsverhalten hinsichtilich Konkurrenze und Allelopathie beträchtlich voneinander unterschieden. Die mögliche Anwendung dieser Interaktionen in der biologischen Schädlingskontrolle und der Landwirtschaft wird ebenfalls zusammengefaßt.

Es wird deutlich, daß die bei diessen Interaktionen zwischen einer Land- und einer Wasserumgebung beobachteten Unterschiede sowohl auf die Wirkungen von Wasser als einer Nicht-Ressourcen-Variablen (“non-resource variables”) als auch auf das besondere Anpassungsverhalten von Wasserpflanzen zurückzuführen sind. Im weiteren stellen wir die Hypothese auf, daß Wasserpflanzen unter bestimmten Bedingungen und in ihren Interaktionen mit verschiedenen Pflanzen sowohl Kompetitive als auch allelopathische Strategien einsetzen.

Der Überblick hebt hervor, daß unsere Kenntnisse von Konkurrenze und Al-lelopathie bei Wasserpflanzen unvollständig und unzulänglich sind und darum sowohl extensive als auch intensive Studien erfordern.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abu Gideiri, Y.B. &A.M. Yousif. 1974. The influence ofEichhornia crassipes Solms. on planktonic development in the White Nile. Arch. Hydrobiol.74:463–467.Google Scholar
  2. Achhireddy, N.R. &Megh Singh. 1984. Allelopathic effects of Lantana (Lantana camara) on milkweedvine (Morrenia odorata). Weed Sci.32: 757–761.Google Scholar
  3. Achmatowicz, O. & Z. Bellen. 1962. Tetrahedron Lett. 1121.Google Scholar
  4. Agami, M. &K.R. Reddy. 1989. Inter-relationships betweenSalvinia rotundifolia andSpirodela polyrhiza at various interaction stages. J. Aquatic PI. Managem.27: 96–102.Google Scholar
  5. —&—. 1990. Competition for space betweenEichhornia crassipes (Mart.) Solms. andPistia stratiotes L. cultured in nutrient enriched water. Aquatic Bot.38: 195–208.CrossRefGoogle Scholar
  6. —&—. 1991. Inter-relationship betweenEichhornia crassipes (Mart.) Solms andHydrocotyle umbellata L. Aquatic Bot.39: 147–157.CrossRefGoogle Scholar
  7. —&—. 1985. Inter-relationships betweenNajas marina L. and three other species of aquatic macrophytes. Hydrobiologia126:169–173.CrossRefGoogle Scholar
  8. Akhtar, S. 1978. Some molluscs associated with water hyacinth. Pakistan J. Sci.30: 20–22.Google Scholar
  9. Aliotta, G., N. Della Greca, P. Monaco, G. Pinto, A. Pollio &L. Previtera. 1990. In vito algal growth inhibition by phytotoxins ofTypha latifolia L. J. Chem. Ecol.16:2637–2646.CrossRefGoogle Scholar
  10. Allanson, B.R. 1973. The fine structure of the periphyton ofChara sp. andPotamogeton natans from Wytham pond, Oxford and its significance to the macrophyte periphyton metabolic model of R.G. Wetzel and H.L. Allen. Freshwater Biol.3:535–541.CrossRefGoogle Scholar
  11. Allen, E.D. &D.H.N. Spence. 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol.87: 269–283.CrossRefGoogle Scholar
  12. Allen, H.L. 1971. Primary productivity, chemo-organography and nutritional interactions of epiphytic algae and bacteria on macrophytes in a lake. Ecol. Monogr.41: 97–127.CrossRefGoogle Scholar
  13. Alsaadawi, I.S., E.L. Rice &T.K.B. Karns. 1983. Allelopathic effects ofPolygonumaviculare L. III. Isolation, characterization and biological phytotoxins other than phenols. J. Chem. Ecol.9(6): 761–773.CrossRefGoogle Scholar
  14. Anderson, L.W.J. 1985. Use of bioassays for allelochemicals in aquatic plants. Pages 351–370,in A.G. Thompson (ed.) The chemistry of allelopathy. ACS Symposium series 268. American Chemical Society, Washington, D.C.Google Scholar
  15. Anderson, M.R. &J. Kalff. 1986. Regulation of submersed aquatic plant distribution in a uniform area of a weedbed. J. Ecol.74:953–961.CrossRefGoogle Scholar
  16. Anthoni, U. &A. Christophersen. 1982. Synthesis of 4-methylthio-l,2-dithiolaneand5-methythio-1,2,3-Trithiane. Two naturally occuring bioactive compounds. Tetrahedron38(15): 2425–2427.CrossRefGoogle Scholar
  17. —,C. Christophersen, J.O. Madsen, S. Wium Andersen &N. Jacobsen. 1980. Biologically active sulphur compounds from the green algaChara globularis. Phytochemistry19:1228–1229.CrossRefGoogle Scholar
  18. Ashton, F.M. &S.R. Bissel. 1987. Influence of temperature and light on dwarf spikerush and slender spikerush growth. J. Aquatic P1. Managern.25:4–7.Google Scholar
  19. —,J.M. Ditomasco &L.W.J. Anderson. 1985 Spikerush (Eleocharis spp.): A source of allelopathics for the control of undesirable aquatic weeds. J. Aquatic P1. Managem.22: 52–56.Google Scholar
  20. Austin, M.P. 1990. Community theory and competition in vegetation. Pages 215–238,in J.B. Grace & D. Tilman (eds.) Perspectives on plant competition. Academic Press, San Diego, CA, USA.Google Scholar
  21. Bachmann, A. 1921. A programme to be carried out in Familla against Anopheles and their larvae (in Spanish). An. Dept Nac. Higiene, Buenos Aires27:117–137.Google Scholar
  22. Barko, J.W. &R.M. Smart. 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biol.10: 229–238.CrossRefGoogle Scholar
  23. —&—. 1981. Comparative influence of light and temperature on the growth of selected submersed macrophytes. Ecol. Monogr.51:219–235.CrossRefGoogle Scholar
  24. Barltrop, J. &D.F. Martin. 1983. Evidence for photodynamic action by a naturally occurringHydrilla growth inhibitor. J. Environm. Sci. Health, A.18: 29–36.Google Scholar
  25. Bate-Smith, E.C. 1968. Phytochemistry7: 459. (cited from McClure, 1970).CrossRefGoogle Scholar
  26. Begon, M., J.L. Harper &C.R. Townsend. 1986. Ecology: Individuals, populations and communities. Blackwells, Oxford, U.K.Google Scholar
  27. Bell, David J. 1974. The influence of osmotic pressure in tests for allelopathy. Trans. Illinois State Acad. Sci.67: 312–317.Google Scholar
  28. Bell, D.T. &C.H. Muller. 1973. Dominance of California annual grasslands byBrassica nigra. Amer. Midl. Naturalist90:277–299.CrossRefGoogle Scholar
  29. Bel’tyukova, K.C. &L.T. Pastushenko. 1963. Antibiotic effect of nupharine on pathogenic bacteria in vitro and in vivo. Mikrobiol. Zh. Akad. Nauk. Ukr. RSR25: 36. Chem. Abstr.59:5536f.Google Scholar
  30. Best, E.P.H. 1988. The phytosociological approach to the description and classification of aquatic macrophytic vegetation. Pages 155–182,in J.J. Symoens (ed.) Vegetation of inland waters. Handbook of vegetation science 15/1. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  31. Bhanja, A., R.K. Mukherjee, N.K. Roy, S. Banerjee, P.K. Sircar &S.M. Sircar. 1968. Isolation and identification of growth substances in the root of water hyacinth (Eichhornia crassipes (Mart.) Solms.). Proc. int. symp. plant growth substances: 47–56. Botany Dept., University Calcutta, Calcutta, India.Google Scholar
  32. Bjorndahl, G. 1983. Structure and biomass ofPhragmites stands. Ph.D. thesis, University of Goteborg, Sweden.Google Scholar
  33. Blindlow, I. 1987. The composition and density of epiphyton on several species of submerged macrophytesthe neutral substrate hypothesis tested. Aquatic Bot.29: 157–168.CrossRefGoogle Scholar
  34. Bonasera, J., J. Lynch &M.A. Leck. 1979. Comparison of the allelopathic potential of four marsh species. Bull. Torrey Bot. Club106: 217–222.CrossRefGoogle Scholar
  35. Bornkamm, R. 1970. Über den Einfluss der Konkurrenz auf die Substanzproduktion und den N-gehalt der Wettbewerbspartner. Flora159: 84–104.Google Scholar
  36. Bowes, G. 1987. Aquatic plant photosynthesis: strategies that enhance carbon gain. Pages 79–98,in R.M.M. Crawford (ed.) Plant life in aquatic and amphibious habitats. Blackwells, Oxford, U.K.Google Scholar
  37. Brammer, E.S. 1979. Exclusion of phytoplankton in the proximity of dominant water soldier (Stratiotesaloides). Freshwater Biol.9:233–249.CrossRefGoogle Scholar
  38. Brönmark, C. 1985. Interactions between macrophytes, epiphytes and herbivores: an experimental approach. Oikos45:26–30.CrossRefGoogle Scholar
  39. —. 1989. Interactions between epiphytes, macrophytes, and freshwater snails: a review. J. Mollusc. Stud.55: 299–311.CrossRefGoogle Scholar
  40. Bulthuis, D.A. &Wm. J. Woelkerling. 1983. Biomass accumulation and shading effects of epiphytes of the seagrass,Heterozostera tasmanaica, in Victoria, Australia. Aquatic Bot.16:137–148.CrossRefGoogle Scholar
  41. Burkholder, J.A. &R.G. Wetzel. 1990. Alkaline phosphatase and algal biomass on natural and artificial plants in an oligotrophic lake: Reevaluation of the role of macrophytes as a phosphorus source for epiphytes. Limnol. & Oceanogr.35:432–443.Google Scholar
  42. Buttery, B.R. &J.M. Lambert. 1965. Competition betweenGlyceria maxima andPhragmites communis in the region of Surlingham Broad. 1. The competition mechanism. J. Ecol.53: 163–182.CrossRefGoogle Scholar
  43. Carignan, &J. Kalff. 1982. Phosphorus release by submersed macrophytes: Significance to epiphyton and phytoplankyton. Limnol. & Oceanogr.27:419–427.Google Scholar
  44. Carter, M.F. &J.C. Grace. 1986. Relative effects ofJusticia americana litter on germination, seedlings and established plants ofPolygonum lapathifolium. Aquatic Bot.23:341–349.CrossRefGoogle Scholar
  45. Cattaneo, A. 1983. Grazing on epiphytes. Limnol. & Oceanogr.28:124–132.CrossRefGoogle Scholar
  46. Center, T.D. &N.R. Spencer. 1981. The phenology and growth of water hyacinth (Eichhornia crassipes (Mart.) Solms.) in a eutrophic north-central Florida lake. Aquatic Bot.10:1–32.CrossRefGoogle Scholar
  47. Chadwick, M.J. &M. Obeid. 1966. A comparative study of the growth ofEichhornia crassipes Solms. andPistia stratiotes L. in water culture. J. Ecol.54: 563–575.CrossRefGoogle Scholar
  48. Chambers, P.A. 1987. Light and nutrients in the control of aquatic plant community structure. II. In situ observations. J. Ecol.75:621–628.CrossRefGoogle Scholar
  49. — &J. Kalff. 1987. Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. J. Ecol.75:611–619.CrossRefGoogle Scholar
  50. — &E. E. Prepas. 1990. Competition and coexistence in submerged aquatic plant communities: the effects of species interactions versus abiotic factors. Freshwater Biol.23: 541–550.CrossRefGoogle Scholar
  51. Cheng, T.S. &D.N. Riemer. 1988. Allelopathy in threesquare burreed (Sparganium americanum) and American eelgrass (Vallisneriaamericana). J. Aquatic P1. Managern.26: 50–55.Google Scholar
  52. —&—. 1989. Characterization of allelochemicals in American eelgrass. J. Aquatic P1. Managern.27: 84–89.Google Scholar
  53. Cherrett, J.M. (ed.) 1989. Ecological concepts: the contribution of ecology to an understanding of the natural world. Blackwells, Oxford, U.K.Google Scholar
  54. Chou, C.H. 1980. Allelopathic researches in the subtropical vegetation in Taiwan. Comp. Physiol. Ecol.5: 222–234.Google Scholar
  55. —. 1990. The role of allelopathy in agroecosystems: Studies from tropical Taiwan. Pages 104–121,in Agroecology. Ecological studies 78. Springer Verlag, Berlin, Germany.Google Scholar
  56. — &S.-J. Chiou. 1979. Autointoxication mechanism ofOryza sativa. II. Effects of culture treatments on the chemical nature of paddy soil and on rice productivity. J. Chem. Ecol.5: 839–859.CrossRefGoogle Scholar
  57. —,Y.-C. Chiang &H.H. Cheng. 1981. Autointoxication mechanism ofOryza sativa. III. Effect of temperature on phytotoxin production during rice straw decomposition in soil. J. Chem. Ecol.7:741–752.CrossRefGoogle Scholar
  58. —,M.L. Lee &H.I. Okaa. 1984. Possible allelopathic interaction betweenOryzaperennis andLeersiahexandra. Bot. Bull. Acad. Sin.25: 1–19.Google Scholar
  59. —,S.Y. Hwang, C.I. Peng, Y.C. Wang, F.H. Hsu &N.J. Chung. 1987. The selective allelopathic interaction of a pasture forest intercropping system in Taiwan. Pl. & Soil98:31–41.CrossRefGoogle Scholar
  60. Clatworthy, J.N. &J.L. Harper. 1962. The comparative biology of closely related species living in the same area. V. Inter and intraspecific interference within cultures ofLemna sp. andSalvinia natans. J. Exp. Bot.13: 307–324.CrossRefGoogle Scholar
  61. Cleland, C.F. &O. Tanaka. 1982. Influence of plant growth substances and salicylic acid on flowering and growth in the Lemnaceae (duckweeds). Aquatic Bot.13: 3–20.CrossRefGoogle Scholar
  62. Clements, F.E. 1904. The development and structure of vegetation. Bot. Surv. Nebraska7: 5–175.Google Scholar
  63. —. 1916. Plant Succession. Analysis of the development of vegetation. Carnegie Inst. Washington Publ. 242. Washington, D.C.Google Scholar
  64. Clough, K.S., T.A. DeBusk &K.R. Reddy. 1987. Model water hyacinth and pennywort systems for the secondary treatment of domestic wastewater. Pages 775–781,in K.R. Reddy & W.H. Smith (eds) Aquatic plants for water treatment and resource recovery. Magnolia Publishing, Orlando, FL., USA.Google Scholar
  65. Connell, J.H. 1990. Apparent versus “real” competition in plants. Pages 9–26,in J.B. Grace & D. Tilman (eds) Perspectives on plant competition. Academic Press, San Diego, USA.Google Scholar
  66. Connor, E.F. &D. Simberloff. 1979. The assembly of species communities: chance or competition. Ecology60: 1132–1140.CrossRefGoogle Scholar
  67. —&—. 1983. Interspecific competition and species co-occurrence patterns on islands: use of null models and the evaluation of evidence. Oikos41:455–465.CrossRefGoogle Scholar
  68. Crawford, S.A. 1979. Farm pond restoration usingChara vulgaris vegetation. Hydrobiologia62: 17–31.Google Scholar
  69. Dale, D. 1992. An allomone in rice plant against stem borer. Pages 171–174,in P. Tauro & S.S. Narwal (eds) Proc. first nat. symp. allelopathy in agroecosystems. Indian Society of Allelopathy, Haryana Agric. University, Hissar, India.Google Scholar
  70. Dale, H.M. 1986. Temperature and light: the determining factors in maximum depth distribution of aquatic macrophytes in Ontario, Canada. Hydrobiologia133: 73–77.Google Scholar
  71. Darwin, C. 1859. The Origin of Species by Means of Natural Selection. Penguin Books, Harmonds-worth. (Reprinted ed. 1968).Google Scholar
  72. Dazo, B.C., N.G. Hairston &I.K. Dawood. 1966. The ecology ofBulinus truncatus andBiomphalaria alexandrina and its implications for the control of Bilharziasis in the Egypt 49 Project Area. Bull. WHO35:339–356.PubMedGoogle Scholar
  73. Della Greca, M., L. Mangoni, A. Molinaro, P. Monaco &L. Previtera. 1990. (20S)- 4 -methyl-24-methylenecholest-7-en-3-ol, an allelopathic sterol fromTypha latifolia. Phytochemistry29(6): 1797–1798.CrossRefGoogle Scholar
  74. DeBusk, T.A., J.H. Ryther, M.D. Hanisak &L.D. Williams. 1981. Effects of seasonality and plant density on the productivity of some freshwater macrophytes. Aquatic Bot.10: 133–142.CrossRefGoogle Scholar
  75. DeSilva, M.P., M.A. Pemadasa, I. Balasooriya, S.I. Abeygunawardena &C. Nanayakkara. 1984. A preliminary study of the interaction betweenEichhorniacrasssipes (Mart.) Solms. andSalvinia molesta Mitchell. Pages 298–303,in G. Thyagarajan (ed) Proc. int. conf. water hyacinth. United Nations Environment Programme, Nairobi.Google Scholar
  76. DeWit, C.T. 1960. On competition. Verslagen Landbouwk. Onderz.66: 1–82.Google Scholar
  77. Dey, B. 1982. Studies on weed biology ofEchinochloa crusgalli (L.) Beauv. and its competitive relationships with rice. Ph.D. thesis, North Eastern Hill University, Shillong, India.Google Scholar
  78. Dhillon, M.S., M.S. Mulla &Yin-Shen Hwang. 1982. Allelochemics produced by the hydrophyteMyriophyllum spicatum affecting mosquitoes and midges. J. Chem. Ecol.8(2): 517–526.CrossRefGoogle Scholar
  79. Docauer, D.M. 1983. A nutrient basis for the distribution of the Lemnacee. Ph.D. thesis, University of Michigan, Ann Arbor, MI.Google Scholar
  80. Dooris, G.M., P.M. Dooris &D.F. Martin. 1988. Effect of a naturally occurring growth inhibitor on the ultrastructure of hydrilla. J. Aquatic P1. Managern.26:72–73.Google Scholar
  81. Dooris, P.M. &D.F. Martin. 1981. Growth inhibition ofHydrilla verticillata by selected lake sediment extracts. Water Res. Bull.16: 112–117.Google Scholar
  82. —&—. 1982. Control of macrophytic growth by naturally produced substances. Pages 61–75,in E.O. Gangstad (ed.) Weed control methods for recreation facilities management. CRC Press, Boca Roton, FL., USA.Google Scholar
  83. —&—. 1985. Naturally occurring substances that inhibit the growth ofHydrilla verticillata. Pages 381–386,in A.C. Thompson (ed.) The chemistry of allelopathy. ACS Symposium series 268. American Chemical Society, Washington, D.C.Google Scholar
  84. —,W.S. Silver &D.F. Martin. 1982. Effect ofHydrilla verticillata growth inhibiting extracts upon the growth ofScenedesmus obliquus (an alga). J. Environm. Sci. Health, A.17: 639–646.Google Scholar
  85. Dorgelo, J. &K. Koning. 1980. Avoidance of macrophytes and additional notes on avoidance of the shore byAcanthodiaptomusdenticornis (Wierzejski 1887) from lake Pavin (Auvergne, France). Hydrobiol. Bull.14:196–208.CrossRefGoogle Scholar
  86. Drobot’ko, Y.G., E. Ya. Rashba, B.E. Aizenman, S.I. Zelepukha, S.I. Novikova &M.B. Kaganskaya. 1958. Antimicrobial activity of alkaloids obtained fromValeriana officinalis, Chelidoniummajus, Nupharluteum andAsarumeuropaeum. Antibiotiki 1958:22; Chem. Abstr.53:12589d.Google Scholar
  87. Drost, D.C. &J.D. Doll. 1980. The allelopathic effect of yellow nutsedge (Cyperus esculentus) on corn (Zea mays) and soybeans (Glycine max). Weed Sci.28: 229–233.Google Scholar
  88. Einhellig, F.A., G.R. Leather &L.L. Hobbs. 1985. Use ofLemna minor L. as a bioassay in allelopathy. J. Chem. Ecol.11:65–72.CrossRefGoogle Scholar
  89. Elakovich, S.D. 1989. Allelopathic aquatic plants for aquatic weed management. Biol. P1.31(6): 479–486.Google Scholar
  90. — &J.W. Wooten. 1987. An examination of the phytotoxicity of the water shield,Brasenia schreberi. J. Chem. Ecol.13:1935–1940.CrossRefGoogle Scholar
  91. —&—. 1989a. Allelopathic aquatic plants for aquatic plant management: a feasibility study. Aquatic Plant Control Program Tech. Rept A-89-2. U.S. Dept of the Army, Army Corps of Engineers, Washington, D.C.Google Scholar
  92. —&—. 1989b. Allelopathic potential of sixteen aquatic and wetland plants. J. Aquatic P1. Managem.27: 78–84.Google Scholar
  93. —&—. 1991. Allelopathic potential ofNuphar lutea (L.) Sibth. & Sm. (Nymphaeaceae). J. Chem. Ecol.17: 701–714.CrossRefGoogle Scholar
  94. El-Ghazal, R.A.K. &D.N. Reimer. 1986. Germination suppression by extracts of aquatic plants. J. Aquatic Pl. Managem.24: 76–79.Google Scholar
  95. Eminson, D. &B. Moss. 1980. The composition and ecology of periphyton communities in freshwaters. 1. The influence of host type and external environment on community composition. Brit. Phycol. J.15: 429–446.CrossRefGoogle Scholar
  96. Evenari, M. 1949. Germination inhibitors. Bot. Rev.15:153–194.CrossRefGoogle Scholar
  97. Feeney, P.P. 1976. Plant apparency and chemical defense. Phytochemistry10: 1–40.Google Scholar
  98. Feoli, E. &L. Orloci (eds). 1991. Computer assisted vegetation analysis. Handbook of vegetation science 11. Kluwer Academic Publishers, Dordrecht.Google Scholar
  99. Fitzgerald, G.P. 1969. Some factors in competition or antagonism among bacteria algae and aquatic weeds. J. Phycol.5: 351–359.CrossRefGoogle Scholar
  100. Forsberg, C., S. Kleiven &T. Willen. 1990. Absence of allelopathic effects ofChara on phyto-plankton in situ. Aquatic Bot.38: 289–294.CrossRefGoogle Scholar
  101. Frank, P.A. &N. Dechoretz. 1980. Allelopathy in dwarf spikerush (Eleocharis coloradoensis). Weed Sci.28:499–505.Google Scholar
  102. Fuerst, E.P. &A.R. Putnam. 1983. Separating the competitive and allelopathic components of interference. J. Chem. Ecol.9:937–944.CrossRefGoogle Scholar
  103. Gaudet, C.L. &P.A. Keddy. 1988. A comparative approach to predicting competitive ability from plant traits. Nature334: 242–243.CrossRefGoogle Scholar
  104. Gaveskaya, N.S. 1969. The role of higher aquatic plants in the nutrition of the animals of freshwater basins. (Ed. by K.H. Mann, translated from Russian by D.G. Maitlland Muller). National Lending Library, Boston Spa. U.K.Google Scholar
  105. Gay, P.A. 1960. Ecological studies ofEichhorniacrassipes Solms. in the Sudan. I. Analysis of spread in the Nile. J. Ecol.48:183–191.CrossRefGoogle Scholar
  106. George, K. 1976. Studies on the chemical control of some important aquatic weeds of Kerala,Salvinia, Ludwigia andCyperus. Pages 255–262,in C.K. Varshney & J. Rzoska (eds.) Aquatic weeds in south east Asia. W. Junk, The Hague.Google Scholar
  107. Gessner, F. 1955. Hydrobotanik. Die physiologischen Grundlagen der Pflanzenverbreitung im Wasser. I. Energiehaushalt. VEB Deutscher Verlag der Wissenschaften, Berlin, Germany.Google Scholar
  108. —. 1959. Hydrobotanik. Die physiologischen Grundlagen der Pflanzenverbreitung im Wasser. II. Stoffhaushalt. VEB Deutscher Verlag der Wissenschaften, Berlin, Germany.Google Scholar
  109. Gibbs, R.D. 1974. Chemotaxonomy of flowering plants. McGill and Queens University Press, Montreal, Canada.Google Scholar
  110. Godmaire, H. &C. Nalewajko. 1990. Structure and development of secretory trichomes onMyriophyllum spicatum L. Aquatic Bot.37: 99–122.CrossRefGoogle Scholar
  111. Gopal, B. 1987. Water Hyacinth. Aquatic Plant Studies 1. Elsevier Science Publishers, Amsterdam.Google Scholar
  112. Goulder, R. 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos20:300–309.CrossRefGoogle Scholar
  113. Grace, J.B. 1983. Autotoxic inhibition of seed germination byTypha latifolia: an evaluation. Oecologia.59: 366–369.CrossRefGoogle Scholar
  114. —. 1987. The impact of pre-emption on the zonation ofTypha species along lakeshores. Ecol. Monogr.57(4): 283–303.CrossRefGoogle Scholar
  115. —. 1988. The effect of nutrient additions on mixtures ofTypha latifolia andTypha domingensis Pers. along a water depth gradient. Aquatic Bot.31: 83–92CrossRefGoogle Scholar
  116. —. 1990. On the relationship between plant traits and competitive ability. Pages 51–65,in J.B. Grace & D. Tilman (eds) Perspectives on plant competition. Academic Press, San Diego, CA, USA.Google Scholar
  117. — &D. Tilman (eds). 1990. Perspectives on Plant Competition. Academic Press, San Diego, CA, USA.Google Scholar
  118. — &R.G. Wetzel. 1981. Habitat partitioning and competitive displacement in cattails (Typha): Experimental field studies. Amer. Naturalist118:463–474.CrossRefGoogle Scholar
  119. Graneli, W. 1987. Shoot density regulation in stands of reed,Phragmites australis (Cav.) Trin. ex Steudel. Arch. Hydrobiol. Beih. Ergebn. Limnol.27:211–222.Google Scholar
  120. Grime, J.P. 1979. Plant strategies and vegetation processes. John Wiley, Chichester, U.K.Google Scholar
  121. Gross, E.M., C.P. Wolk &F. Jüttner. 1991. Fischerellin, a new allelochemical from the freshwater cyanobacteriumFischerella muscicola. J. Phycol.27:686–692.CrossRefGoogle Scholar
  122. Guseva, K.A. &S.P. Goncharova. 1965. O vliianii vysshei vodnoi rastitel ‘nosti na razvitie planktonnykh sinezelenykh vodoroslei. Ekologiia i Fiziologiia Sinezelenykh Vodoroslei: 230–234. Leningrad.Google Scholar
  123. Hairston, N.G., F.E. Smith &L.G. Slobodkin. 1960. Community structure, population control and competition. Amer. Naturalist94:421–425.CrossRefGoogle Scholar
  124. Haller, W.T. 1974. Photosynthetic characteristics of the submersed aquatic plantsHydrilla, Southern Naiad andVallisneria. Ph.D. dissertation, University of Florida, Gainesville, FL, USA.Google Scholar
  125. — &D.L. Sutton. 1975. Community structure and competition between the aquatic weedHydrilla verticillata andVallisneria neotropicalis. Hyacinth Control J.13:48–50.Google Scholar
  126. Harborne, J.B. 1977. Introduction to ecological biochemistry. Academic Press, London.Google Scholar
  127. Harper, J.L. 1961. Approaches to the study of plant competition. Pages 1–39,in F.L. Milthorpe (ed.) Mechanisms in biological competition. Society for Experimental Biology, Cambridge University Press, Cambridge.Google Scholar
  128. —. 1964. The nature and sequence of interference amongst plants. Proc. XI Int. Congr. Genet.2:465–482.Google Scholar
  129. —. 1977. Population Biology of Plants. Academic Press, New York.Google Scholar
  130. Harrison, P.G. &C. Durance. 1985. Reductions in photosynthetic carbon uptake in epiphytic diatoms by water soluble extracts of leaves ofZostera marina. Mar. Biol.90: 117–119.CrossRefGoogle Scholar
  131. Hartog, C. den &S. Segal. 1964. A new classification of the water plant communities. Acta Bot. Néerl.13: 367–393.Google Scholar
  132. — &G. van der Velde. 1988. Structural aspects of aquatic plant communities. Pages 113–154, inJ.J. Symoens(ed.) Vegetation of inland waters. Handbook of vegetation science 15/1. Kluwer Academic Publishers, Dordrecht.Google Scholar
  133. Hasler, A.D. &E. Jones. 1949. Demonstration of antagonistic action of large aquatic plants on algae and rotifers. Ecology30: 359–364.CrossRefGoogle Scholar
  134. Hejny, S. 1960. Ökologische Charakteristik der Wasser- und Sumpfpflanzen in den slowakischen Tiefebenen. Slovak. Akad. Wiss., Bratislava.Google Scholar
  135. —. 1971. The dynamic characteristics of littoral vegetation with respect to changes of water level. Hidrobiologia12: 71–85.Google Scholar
  136. Hogeweg, P. &A.L. Brenkert-van Riet. 1969. Structure of aquatic vegetation: a comparison of aquatic vegetation in India, the Netherlands and Czechoslovakia. Trop. Ecol.10:139–162.Google Scholar
  137. Holm, L. 1969. Chemical interaction between plants on agricultural lands. Down to Earth25:16–22.Google Scholar
  138. Hootsmans, M. J.M. &J.E. Vermaat 1985. The effects of periphyton grazing by three epifaunal species on the growth ofZostera marina. L. under experimental conditons. Aquatic Bot.22: 83–88.CrossRefGoogle Scholar
  139. Horecka, M. 1991. The significant role ofChara hispida grown in water regime of a gravel pit lake at Senec. Arch. Protistenkd.139:275–278.Google Scholar
  140. Howard, R.K. 1982. Impact of activities of epibenthic amphipods on surface-fouling of eelgrass leaves. Aquatic Bot.14:91–97.CrossRefGoogle Scholar
  141. — &F.T. Short. 1986. Seagrass growth and survivorship under the influence of epiphyte grazers. Aquatic Bot.24:287–302.CrossRefGoogle Scholar
  142. Howard-Williams, C. 1978. Growth and production of aquatic macrophytes in a South African temperate saline lake. Verh. Int. Verein. Limnol.20: 1153–1158.Google Scholar
  143. —. 1981. Studies on the ability of aPotamogeton pectinatus community to remove dissolved nitrogen and phosphorus compounds from lake water. J. Appl. Ecol.18:619–637.CrossRefGoogle Scholar
  144. — &B.R. Allanson. 1981. Phosphorus cycling in aPotamogetonpectinatus L. Bed. Oecologia.49: 56–66.CrossRefGoogle Scholar
  145. Hutchinson, G.E. 1970. The chemical ecology of three species ofMyriophyllum (Angiospermae, Haloragaceae). Limn. & Oceanogr.15:1–5.Google Scholar
  146. —. 1975. A treatise on limnology. Vol. III. Limnological botany. J. Wiley & Sons, Chichester, U.K.Google Scholar
  147. Iakawa, M., V.M. Thomas, L.J. Buckley &J.J. Uebel. 1973. J. Phycol.9: 302–305. (cited from Wium-Andersonetal., 1983).Google Scholar
  148. Ikusima, I. 1955. Growth of duckweed populations as related to frond density. Physiol. Ecol. Japan6: 69–81. (in Japanese).Google Scholar
  149. —,K. Shinozaki &T. Kira. 1955. Intraspecific competition among higher plants. III. Growth of duckweed, with a theoretical consideration of the C-D effect. J. Inst. Polytechn. Osaka City Univ. Ser. Biol.D6:107–119.Google Scholar
  150. Iswaran, V. &A. Sen. 1973. Influence of extract of water hyacinth (Eichhomia crassipes) on the yield of brinjal (Solanummelongena) var. Pusa Kranti. Sci. & Cult.39: 394–395.Google Scholar
  151. Izac, R., D. Stierle &J. Sims. 1982. Phytochemistry21:229. (cited from Wium-Anderson et al., 1983).CrossRefGoogle Scholar
  152. Jacobsen, N. &L.E.K. Pedersen. 1983. Synthesis and insecticidal properties of Propane-1,3-dithiol (Analogues of the insecticidal derivatives of Dithiolane & Trithiane from the algaChara globularis Thuillier). Pestic. Sci.14: 90–97.CrossRefGoogle Scholar
  153. Jain, R., Megh Singh &DJ. Dezman. 1989. Qualitative and quantitative characterization of phenolic compounds from Lantana (Lantana camara) leaves. Weed Sci.17:302–307.Google Scholar
  154. Jangaard, N.O., M.M. Sckeri, &R.H. Schieferstein. 1971. The role of phenolics and abscisic acid in nutsedge tuber dormancy. Weed Sci.19: 17–20.Google Scholar
  155. Jasnowski, M. 1975. Torfowiskai tereny bagienne WPolsce. Pages 356– N.J. Kac (ed.) Bagna kuli zlemskiej. PWN, Warszawa, Poland.Google Scholar
  156. Johansson, M.E. &P.A. Keddy. 1991. Intensity and asymmetry of competition between pairs of different degrees of similarity: an experimental study on two guilds of wetland plants. Oikos60: 27–34.CrossRefGoogle Scholar
  157. Johnston, D.L., D.L. Sutton, V. V. Vandiver Jr, &K.A. Langeland. 1983. Replacement ofHydrilla verticillata by other aquatic plants in a pond with emphasis on growth of American lotus (Nelumbo luted). J. Aquatic Pl. Managern.21:41–43.Google Scholar
  158. Jones, R.C., K. Walti &M.S. Adams. 1983. Phytoplankton as a factor in decline of the submersed macrophyteMyriophyllum spicatum L. in Lake Wingra Wisconsin. Hydrobiologia107: 213–219.CrossRefGoogle Scholar
  159. Junk, W.J. 1977. The invertebrate fauna of the floating vegetation of Bung Borapet, a reservoir in central Thailand. Hydrobiologia53:229–238.CrossRefGoogle Scholar
  160. Jupp, B.P. &D.H.N. Spence. 1977. Limitations on macrophytes in a eutrophic lake Loch leven 1. Effects of phytoplankton. J. Ecol.65:175–186.CrossRefGoogle Scholar
  161. Jurd, L., T.A. Geissman &M.K. Seikel. 1957. Arch. Biochem. Biophys.67: 284. (cited from McClure, 1970).PubMedCrossRefGoogle Scholar
  162. Jüttner, F. 1981. Biologically active compounds released during algal blooms. Verh. Int. Verein. Limnol.21:227–230.Google Scholar
  163. Kaul, V. & U. Bakaya. 1976. The noxious floating lemnid-Salvinia aquatic weed complex in Kashmir. Pages 188–192, in C.K. Varshney & J. Rzoska (eds) Aquatic weeds in south east Asia. W. Junk, The Hague.Google Scholar
  164. Kautsky, L. 1991. In situ experiments on interrelationships between six brackish macrophyte species. Aquatic Bot.39:159–172.CrossRefGoogle Scholar
  165. Keating, K.J. 1977. Allelopathic influence on blue green bloom sequence in a eutrophic lake. Science196: 885–887.PubMedCrossRefGoogle Scholar
  166. Keddy, P.A. 1976. Lakes as islands: the distributional ecology of two aquatic plants, Lemna minor L. andL. trisulca L. Ecology57: 353–359.CrossRefGoogle Scholar
  167. —. 1989. Competition. Chapman & Hall, London.Google Scholar
  168. —. 1990. Competitive hierarchies and centrifugal organization in plant communities. Pages 265–290,in J.B. Grace & D. Tilman (eds.) Perspectives on plant competition. Academic Press, San Diego, CA, USA.Google Scholar
  169. Keeley, J.E. 1981.Isoetes howellii: a submerged aquatic CAM plant? Amer. J. Bot.68:420–424.CrossRefGoogle Scholar
  170. Kirpenko, N.I. 1986. Phytopathic properties of the toxin of bluegreen algae. Gidrobiol. Zhurn.22(1): 48–50.Google Scholar
  171. Kleiven, S.W. &W. Szczepanska. 1988. The effects of extracts ofChara tomentosa and two other aquatic macrophytes on seed germination. Aquatic Bot.32:193–198.CrossRefGoogle Scholar
  172. Kogan, S.I. &G.A. Chinnova. 1972. Relations betweenCeratophyllum demersum (L.) and some blue-green algae. Hydrobiol. J. (USSR, Translation Ser.)8:14–25.Google Scholar
  173. Kohli, R.K., K. Kaur, P. Chaudhry, A. Kumari &D.B. Saxena. 1987. Negative aspects of Eucalyptus farming. Pages 225–233,in P.K. Khosla & D.K. Khurana (eds.) Agroforestry for rural needs. Indian Society of Tree Scientists, Solan, India.Google Scholar
  174. Krishnamoorthi, K.P., S. Shende &M.K. Abdulappa. 1968. On a collection of some molluscs (bivalves and gastropods) from some water bodies of Nagpur with ecological notes. Environm. Health10:43–50.Google Scholar
  175. Kulshreshtha, M. 1981. Allelochemic influence of some aquatic macrophytes. Acta Limnol. Indica1: 35–37.Google Scholar
  176. — &B. Gopal. 1983. Allelopathic influence ofHydrilla verticillata (L.F.) Royle on the distribution ofCeratophyllum species. Aquatic Bot.16:207–209.CrossRefGoogle Scholar
  177. Kushari, D.P. 1987. Effect of leaf leachates of neem and shirish on the biomass productionofAzolla pinnata. Int. Rice Res. Newslett.12: 34.Google Scholar
  178. LaLonde, R.T., C.D. Morris, C.F. Wong, L.C. Gardner, D.J. Eckert, D.R. King &R.H. Zimmerman. 1979. Response ofAedes triseriatus larvae to fatty acids ofCladophora. J. Chem. Ecol.5: 371–381.CrossRefGoogle Scholar
  179. Landolt, E. 1957. Physiologische und ökologische Untersuchungen an Lemnaceen. Ber. Schweiz. Bot. Gesell.67: 271–410.Google Scholar
  180. - 1986. Biosystematic investigations in the family of duckweeds (Lemnaceae). Vol. 2. The family of Lemnaceae- a monographic study. Vol. 1. Veröffent. Geobot. Inst. Eidg. Hochschule, Stift. Rübel, Zurich 71.Google Scholar
  181. - 1987. Biosystematic investigations in the family of duckweeds (Lemnaceae). Vol. 4. The family of Lemnaceae- a monographic study. Vol. 2. Veröffent. Geobot. Inst. Eidg. Hochschule, Stift. Rübel, Zurich 95.Google Scholar
  182. Law, R. &A.R. Watkinson. 1989. Competition. Pages 243–284,in J.M. Cherrett (ed.) Ecological concepts: the contribution of ecology to an understanding of the natural world. Blackwells, Oxford, U.K..Google Scholar
  183. Leather, G.R. &F.A. Einhellig. 1985. Mechanisms of allelopathic action in bioassay. Pages 197–205, in A.C. Thompson (ed.) The chemistry of allelopathy. ACS Symposium series 268. American Chemical Society, Washington, D.C. USA.Google Scholar
  184. —&—. 1986. Bioassay in the study of allelopathy. Pages 133–145, in A.R. Putnam and C.S. Tang (eds.) The science of allelopathy. John Wiley, New York.Google Scholar
  185. —&—. 1988. The bioassay of naturally occurring allelochemicals for phytotoxicity. J. Chem. Ecol.14:1821–1828.CrossRefGoogle Scholar
  186. Lee, H.K. &J.O. Guh. 1982. Study on competition ability and chemical control ofSagittaria pygmaea Miquel- a perennial weed in paddy field. Nongsa Sihom Yongu Pogo24: 16–23.Google Scholar
  187. Lincoln, D.E. &D. Couvet. 1989. The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint. Oecologia78:112–114.CrossRefGoogle Scholar
  188. Little, E.C.S. 1966. The invasion of man-made lakes by plants. Pages 75–86,in R.H. Lowe-McConnell (ed.) Man-made lakes. Academic Press, London.Google Scholar
  189. Lodge, D.M. 1985. Macrophyte-gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshwater Biol.15: 695–708.CrossRefGoogle Scholar
  190. —. 1986. Selective grazing on periphyton: A determinant of freshwater gastropod microdistribution. Freshwater. Biol.16: 831–841.CrossRefGoogle Scholar
  191. Loucks, O.L. 1990. Land water interactions. Pages 243–258,in B.C. Patten, S.E. Jorgensen, H.J. Dumont, B. Gopal, P.P. Koryavov, J. Kvet, H. Löffler, Y.M. Sverizhev & J.G. Tundisi (eds.) Wetlands and shallow continental water bodies. Vol. 1. Natural and human relationships. SPB Academic Publishing, The Hague.Google Scholar
  192. Lovett-Doust, L. 1981. Population dynamics and local specialization in a clonal perennial (Ranunculus). I. The dynamics of ramets in contrasting habitats. J. Ecol.69:743–755.CrossRefGoogle Scholar
  193. — &J. Lovett-Doust. 1982. The battle strategies of plants. New Scientist95: 81–84.Google Scholar
  194. Maberly, S.C. 1983. The interdependence of photon irradiance and free carbon dioxide on bicarbonate concentration on the photsynthetic compensation points of freshwater plants. New Phytol.93: 1–12.CrossRefGoogle Scholar
  195. Madsen, J.D., J.W. Sutherland, J.A. Bloomfield, L.W. Eichler &C.W. Boylen. 1991. The decline of native vegetation under dense Eurasian watermilfoil canopies. J. Aquatic Pl. Managern.29: 94–99.Google Scholar
  196. Maestrini, S.Y. &DJ. Bonin. 1981. Allelopathic relationships between phytoplankton species: Algal ecology toxicity. Canad. Bull. Fish. Aquatic Sci.209: 323–338. Fisheries and Oceans, Govt of Canada, Ottawa.Google Scholar
  197. Malthus, T.R. 1798. An essay on the principle of population. Penguin Books, Harmondsworth. (Reprinted ed. 1982).Google Scholar
  198. Martin, D.F. 1983. Structural studies of a naturally occurring hydrilla inhibitor. Miscellaneous Paper A-83-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.Google Scholar
  199. Martin, B.B. &D.F. Martin. 1988. Influence of substituted phenols on the growthof Hydrilla. J. Aquatic Pl. Managern.26: 74–75.Google Scholar
  200. May, F.E. &J.E. Ash. 1990. An assessment of the allelopathic potential ofEucalyptus. Austral. J. Bot. 38: 245–254.CrossRefGoogle Scholar
  201. McClure, J.W. 1970. Secondary constituents of aquatic angiosperms. Pages 233–265,in J.B. Harborne (ed.) Phytochemical Phylogeny. Academic Press. New York.Google Scholar
  202. — &R.E. Alston. 1964. Nature 201: 311. (cited from McClure 1970).PubMedCrossRefGoogle Scholar
  203. McCracken, M.D., R.E. Middaugh &R.S. Middaugh. 1980. A chemical characterization of an algal inhibitor obtained fromChlamydomonas. Hydrobiologia70:271–276.CrossRefGoogle Scholar
  204. McCreary, N.J. 1985. Competition and coexistence in two vegetative perennials:Eleocharis acicularis (L.) R. & S. andJuncuspelocarpus formasubmersus Fassett. Ph.D. thesis, University of Notre Dame, IN.Google Scholar
  205. —. 1991. Competition as a mechanism of submersed macrophyte community structure. Aquatic Bot.41: 177–193.CrossRefGoogle Scholar
  206. -& S.R. Carpenter. 1983. Competition among submersed perennial plants: use of reciprocal replacement series in situ. Proceedings of the international symposium on aquatic macrophytes Nijmegen: 134–138.Google Scholar
  207. —&—. 1987. Density dependent growth interactions betweenEleocharis acicularis (L.) R. & S. andJuncuspelocarpus formasubmersus Fassett. Aquatic Bot.27:229–241.CrossRefGoogle Scholar
  208. —,—J.E. Chaney. 1983. Coexistence and interference in two submersed freshwater perennial plants. Oecologia59:393–396.CrossRefGoogle Scholar
  209. McIlraith, A.L., G.G.C. Robinson &J.M. Shay. 1989. A field study of competition and interaction betweenLemna minor andLemna trisulca. Canad. J. Bot.67:2904–2911.CrossRefGoogle Scholar
  210. McLay, C.L. 1974. The distribution of duckweedLemna perpusilla in a small southern California lake: An experimental approach. Ecology55: 262–276.CrossRefGoogle Scholar
  211. McMillan, C., O. Zapata &L. Escobar. 1980. Sulphated phenolic compounds in seagrasses. Aquatic Bot.8: 267–278.CrossRefGoogle Scholar
  212. McNaughton, S.J. 1968. Autotoxic feedback in relation to germination and seedling growth inTypha latifolia. Ecology49:367–369.CrossRefGoogle Scholar
  213. Mehta, I. &R.K. Sharma. 1975. Control ofTypha by a competitive plant. Ann. Arid Zone14: 175–182.Google Scholar
  214. Meteiko, T. Ya. 1981. Metabolites of higher aquatic plants and their role in hydrobiocoenoses: a review. (in Russian). Gidrobiologi Zhurnal27(4): 3–14.Google Scholar
  215. Misra, A., G.K. Patro &G.C. Tosh. 1976. Studies on chemical control ofChara. Pages 265–268, in C.K. Varshney & J. Rzoska (eds.) Aquatic weeds in south east Asia. W. Junk, The Hague.Google Scholar
  216. Misra, R. D. 1938. Edaphic factors in the distribution of aquatic plants in the English lakes. J. Ecol.38:411–451.Google Scholar
  217. Moeller, R.E. 1978. Seasonal changes in biomass, tissue chemistry and net production of the evergreen hydrophyteLobelia donmanna. Canad. J. Bot.56:1425–1433.Google Scholar
  218. Moen, R.A. &Y. Cohen. 1989. Growth and competition betweenPotamogeton pectinatus L. andMyriophyllumexalbescens Fern. in experimental ecosystems. Aquatic Bot.33:257–270.CrossRefGoogle Scholar
  219. Moens, R. 1981. Les habitats deLymnaea truncatula hote intermediaire deFasciola hepatica. Rev. Agric.34:1563–1580.Google Scholar
  220. Mook, J.H. &J.van der Toorn. 1982. The influence of environmental factors and management on stands ofPhragmitesaustralis. II. Effects on yield and its relationship with shoot density. J. Appl. Ecol.19:501–517.CrossRefGoogle Scholar
  221. Morton, B.A. &J.E. Keeley. 1990. C4 acid fixation in photosynthesis of the submerged aquaticEleocharis acicularis (L.) R. & S. Aquatic Bot.36: 379–388.CrossRefGoogle Scholar
  222. Moss, B. 1989. Water pollution and the management of ecosystems: A case study of science and scientist. Pages 401–422,in P.J. Grubb & J.B. Whittaker (eds.) Toward a more exact ecology. Blackwells, Oxford, U.K.Google Scholar
  223. Moyle, J.B. 1945. Some chemical factors influencing the distribution of aquatic plants in Minnesota. Amer. Midl. Naturalist34: 402–420.CrossRefGoogle Scholar
  224. Muller, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club93: 332–351.CrossRefGoogle Scholar
  225. — 1969. Allelopathy as a factor in ecological process. Vegetatio18:348–357.CrossRefGoogle Scholar
  226. Munakata, K., S. Marumo, K. Ota & Y.L. Chen. 1965. Tetrahedron Lett. 4167. (cited from McClure 1970).Google Scholar
  227. Myers, R.L. 1984. Ecological compression ofTaxodium distichum var.nutans byMelaleuca quinquenerviain southern Florida. Pages 358–364,in K.C. Ewel and H.T. Odum (eds) Cypress swamps. University of Florida Press, Gainesville, FL, USA.Google Scholar
  228. Nat. Acad. Sci. 1976. Making aquatic weeds useful. Some perspectives for developing countries. National Academy of Sciences, Washington, D.C.Google Scholar
  229. Ndifon, G.T. 1979. Studies on the feeding biology, anatomical variations and ecology of the vectors of Schistosomiasis and other freshwater snails in South Western Nigeria. Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria.Google Scholar
  230. — &F.M.A. Ukoli. 1989. Ecology of freshwater snails in South Western Nigeria. 1. Distribution and habitat preferences. Hydrobiologia171:231–253.CrossRefGoogle Scholar
  231. Niklas, K.J. &V. Kerchner. 1984. Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology10: 79–101.Google Scholar
  232. Numata, M. 1982. Weed-ecological approaches to allelopathy. Pages 169–173,in W. Holzner & M. Numata (eds.). Biology and ecology of weeds. Dr. W. Junk Publ., The Hague.Google Scholar
  233. Nyberg, P.F. 1986. Effects of allelopathic chemicals on photosynthetic rate ofLemna minor. MA Thesis, University of S. Dakota, Vermillion, SD, USA.Google Scholar
  234. Oborn, E.T., W.T. Moran, K.T. Greene & T.R. Bartley. 1954. Weed control investigations on some important plants which impede flow of western irrigation waters. Joint Lab Report SI-2: 16–17. USDA Bureau of Reclamation Engineering Lab. & USDA ARS Field Crops Branch.Google Scholar
  235. O’Hara, J. 1967. Invertebrates found in the water hyacinth mats. Quart. J. Florida Acad. Sci.30: 73–80.Google Scholar
  236. Okland, R.H. 1990. Vegetation ecology: Theory, methods and applications with reference to Fennoscandia. Sommerfeltia, Suppl.1:1–231.Google Scholar
  237. O’Neill Morin, J. &K.D. Kimball. 1983. Relationship of macrophyte mediated changes in the water column to periphyton composition and abundance. Freshwater Biol.13:403–414.CrossRefGoogle Scholar
  238. Orth, R.J. &J. van Montfrans. 1984. Epiphyte-seagrass relationships with an emphasis on the role of micrograzing. Aquatic Bot.18:43–69.CrossRefGoogle Scholar
  239. Ostrofsky, M.L. &E.R. Zettler. 1986. Chemical defences in aquatic plants. J. Ecol.74:279–284.CrossRefGoogle Scholar
  240. Ozimek, T., E. Pieczynska &A. Hankiewicz. 1991. Effects of filamentous algae on submerged macrophyte growth: a laboratory experiment. Aquatic Bot.41: 309–315.CrossRefGoogle Scholar
  241. Parija, P. 1934. Physiological investigations on waterhyacinth,Eichhornia crassipes in Orissa with notes on some other aquatic weeds. Indian J. Agric. Sci.4: 399–429.Google Scholar
  242. Patience, R.L., P.R. Sterry &J.D. Thomas. 1983. Changes in chemical composition of a decomposing aquatic macrophyte,Lemnapaucicostata. J. Chem. Ecol.9: 889–911.CrossRefGoogle Scholar
  243. Patrick, Z., T. Toussoun &L. Koch. 1964. Effect of crop residue decomposition products on plant roots. Ann. Rev. Phytopath.2: 267–292.CrossRefGoogle Scholar
  244. Pawlowski, B. &K. Zarzycki. 1972. Zespoly wodne i begienne. Pages 317–326,in W. Szafer & K. Zarzyki (eds.) Szata roslinna polski. 1. PWN, Warszawa, Poland.Google Scholar
  245. Pennak, R.W. 1966. Structure of Zooplankton populations in the littoral macrophyte zone of some Colorado lakes. Trans. Amer. Microscop. Soc.85:329–349.CrossRefGoogle Scholar
  246. —. 1973. Some evidence for aquatic macrophytes as repellent for a limnetic species ofDaphnia. Int. Rev. Gesamten Hydrobiol.58:569–576.CrossRefGoogle Scholar
  247. Philipose, M.T., V. Ramachandran, S.B. Singh &T. Ramaprabhu. 1970. Some observations on the weeds of cultivable freshwaters in Orissa. J. Inland Fish. Soc. IndiaII: 61–64.Google Scholar
  248. Phillips, G.L., D. Eminson &B. Moss. 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Bot.4: 103–126.CrossRefGoogle Scholar
  249. Pianka, E.R. 1981. Competition and niche theory. Pages 167–196,in R.M. May (ed.) Theoretical ecology. W.B. Saunders, Philadelphia.Google Scholar
  250. Pieczynska, E. 1972. Ecology of the eulittoral zones of lakes. Ekol. Pol.20:637–732.Google Scholar
  251. Pimentel, D. &P.C. White. 1959. Biological environments and habits ofAustralorbis glabratus. Ecology40:541–550.CrossRefGoogle Scholar
  252. Pieterse, A.H. &K.J. Murphy (eds) 1990. Aquatic weeds: The ecology and management of nuisance aquatic vegetation. Oxford University Press, Oxford, U.K.Google Scholar
  253. Pip, E. 1984. Ecogeographical tolerance range variation in aquatic macrophytes. Hydrobiologia108: 37–48.Google Scholar
  254. —. 1987. The ecology ofPotamogeton species in central North America. Hydrobiologia153: 203–216.Google Scholar
  255. Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Advan. Agron.24: 29–96.Google Scholar
  256. Porwal, M.K. &S.L. Mundra. 1992. Allelopathic effects of aqueous extracts ofCyperus rotundus andEchinochloacolonum on germination and growth of blackgram and paddy. Pages 87–88, in P. Tauro & S.S. Narwal (eds.) Proc. first nat. symp. allelopathy in agroecosystems. Indian Society of Allelopathy, Haryana Agric. University, Hissar, India.Google Scholar
  257. Pridham, J.B. 1964. Phytochemistry3: 493. (cited from McClure, 1970).CrossRefGoogle Scholar
  258. Proctor, V.W. 1957. Some controlling factors in the distribution ofHaematococcus pluvialis. Ecology38:457–462.CrossRefGoogle Scholar
  259. Putnam, A.R. 1983. Allelopathic chemicals. Nature’s herbicides in action. Chem. Eng. News4: 34–45.Google Scholar
  260. — 1988. Allelochemicals from plants as herbicides. Weed Technol.2: 510–518.Google Scholar
  261. — &C.S. Tang (eds). 1986. The Science of Allelopathy. John Wiley, New York.Google Scholar
  262. Quackenbush, R.C., D. Bunn, &W. Lingren. 1986. HPLC determination of phenolic acids in the water soluble extract ofZostera marina (L.) (Eelgrass). Aquatic Bot.24: 83–84.CrossRefGoogle Scholar
  263. Rai, D.N. &J. DattaMunshi. 1981. Ecological characteristics of chaurs of North Bihar. Int. J. Ecol. Environ. Sci.7: 89–98.Google Scholar
  264. —,P.K. Verma &J. DattaMunshi. 1980. Interactions between a floating (Trapa bispinosa) and submerged vegetation community in a fishpond of Bhagalpur, India. Pol. Arch. Hydrobiol.27:137–142.Google Scholar
  265. Ramaprabhu, T. 1972. Observations on the autecology ofCeratophyllumdemersum L. with notes on its control. J. Asiat. Soc.14: 149–162.Google Scholar
  266. Ramirez-Toro, G.I., G.R. Leather &F.A. Einhellig. 1988. Effects of three phenolic compounds onLemna gibba G3. J. Chem. Ecol.14: 845–853.CrossRefGoogle Scholar
  267. Reavell, P.E. 1980. A study of the diets of some British freshwater gastropods. J. Concholl.30:253–271.Google Scholar
  268. Reddy, K.R. 1988. Water hyacinth (Eichhorniacrassipes (Mart.) Solms.) biomass cropping system. I. Production. Pages 103–140, in W.H. Smith & J.R. Frank (eds.) Methane from biomass: A systems approach. Elsevier, London.Google Scholar
  269. — &W.F. Debusk. 1984. Growth characteristics of aquatic macrophytes cultured in nutrient enriched water: I. Water hyacinth, water lettuce and pennywort. Econ. Bot.38(2): 229–239.Google Scholar
  270. —&—. 1985. Growth characteristics of aquatic macrophytes cultured in nutrient enriched water: II.Azolla, duckweed andSalvinia. Econ. Bot.39(2): 200–205.Google Scholar
  271. —,D.L. Sutton &G.E. Bowes. 1983. Biomass production of freshwater aquatic plants in Florida. Proc. Soil. Crop Sci. Soc. Fl.42: 28–40.Google Scholar
  272. Rejmankova, E. 1975. Comparison ofLemnagibba andLemna minorfrom the production ecological viewpoint. Aquatic Bot.1: 423–428.CrossRefGoogle Scholar
  273. Reznik, H. &R. Neuhausel. 1959. Z. Bot.47: 41. (cited from McClure 1970).Google Scholar
  274. Rhoades, D.F. &R.G. Cates. 1976. Toward a general theory of plant anti-herbivore chemistry. Recent Advances Phytochem.10: 168–213.Google Scholar
  275. Rice, E.L. 1967. Chemical warfare between plants. Bios38:67–74.Google Scholar
  276. —. 1974. Allelopathy. First Edition. Academic Press, N.Y.Google Scholar
  277. —. 1979. Allelopathy: an update. Bot. Rev.45:15–109.Google Scholar
  278. —. 1984. Allelopathy. 2nd Edition. Academic Press, N.Y.Google Scholar
  279. Rogers, K.H. &C.M. Breen. 1983. An investigation of macrophyte, epiphyte and grazer interactions. Pages 217–226, in R.G. Wetzel (ed.) Periphyton of freshwater ecosystems. Develop. Hydrobiol. 17. W. Junk, The Hague.Google Scholar
  280. Sanchez Tames, R., M.D.V. Gesto &E. Vieitez. 1973. Growth substances isolated from tubers ofCyperus esculentus var.aureus. Physiol. Pl.28:195–200.CrossRefGoogle Scholar
  281. Sankaran, T. &V.P. Rao. 1972. An annotated list of insects attacking some terrestrial and aquatic weeds in India with records of some parasites of the phytophagous insects. Techn. Bull. Commonw. Inst. Biol. Control15:131–157.Google Scholar
  282. Saxena, Manjula K. 1991. Effect of terrestrial litter inputs on the growth of aquatic plants. International conference on land-water interactions, Abstracts: 147. National Institute of Ecology, New Delhi.Google Scholar
  283. —. 1992. Allelopathic potential of terrestrial plants against the growth of aquatic weeds. Pages 147–148, in P. Tauro & S.S. Narwal (eds) Proc. first nat. symp. allelopathy in agroecosystems. Indian Society of Allelopathy, Haryana Agric. University, Hissar, India.Google Scholar
  284. Schloesser, D.W., T.A. Edsall &B.A. Manny. 1985. Growth of submersed macrophyte communities in the St. Clair-Detroit river system between Lake Huron and Lake Erie. Canad. J. Bot.63: 1061–1065.Google Scholar
  285. Schreiter, T. 1928. Untersuchungen über den Einfluss einer Helodeawucherung auf die Netzplankton des Hirschberger Grossteiches in Bohmen in den Jahren 1921 bis 1925 incl. Sb. vyzk. Ust. zemed. RCS61.Google Scholar
  286. Scholes, K. 1987. Effects of six classes of allelochemicals on growth, photosynthesis, and chlorophyll content inLemna minor. MA thesis, University of S. Dakota, Vermillion, SD, USA.Google Scholar
  287. Schröder, R. 1987. Das Schilfsterben am Bodensee-Untersee: Beobachtungen, Untersuchungen und Gegenmassnahmen. Arch. Hydrobiol. Suppl.76: 53–99.Google Scholar
  288. Sculthorpe, C.D. 1967. The biology of aquatic vascular plants. Edward Arnold, London.Google Scholar
  289. Segal, S. 1968. On structure, zonation and succession in vegetation of higher aquatics. Manuscript to Expert Meeting on Ecology and Control of Aquatic Vegetation. UNESCO, Paris.Google Scholar
  290. Seidel, K. 1965. Phenol-Abbau in Wasser durchScripus lacustris L. wahrend einer versuchsdauer von 31 Monaten. Naturwissenschaften52(13): 398–399.CrossRefGoogle Scholar
  291. —. 1969. Zur bakteriziden Wirkung höherer Pflanzen. Naturwissenschaften56(12): 642–643.PubMedCrossRefGoogle Scholar
  292. —. 1971 a. Wirkung höherer Pflanzen auf pathogene Keime in Gewässern. Naturwissenschaften58(4): 150–151.PubMedCrossRefGoogle Scholar
  293. —. 1971b. Macrophytes as functional elements in the environment of man. Hidrobiologia, Bucuresti12: 121–130.Google Scholar
  294. —. 1972. Exudat-Effekt der Rhizothamnien vonAlnus glutinosa Gaertner. Naturwissenschaften59(8): 366–367.CrossRefGoogle Scholar
  295. —. 1973. Zur Biologie und Gewässer-Reinigungsvermögen vonIris pseudoacorus L. Naturwissenschaften60(3): 158.Google Scholar
  296. —. 1974.Schoenoplectus lacustris (L.) Palla zur Reinigung von Gewässern. Naturwissenschaften61(2): 81.PubMedGoogle Scholar
  297. — &R. Kickuth. 1970. Wasser und Boden 1970: 38–40. (cited from Seidel, 1971b).Google Scholar
  298. Sharma, K.P. 1985. Allelopathic influence of algae on the growth ofEichhornia crassipes (Mart.) Solms. Aquatic Bot.22: 71–78.CrossRefGoogle Scholar
  299. — &B. Gopal. 1978. Seed germination and occurrence of seedlings ofTypha species in nature. Aquatic Bot.4:353–358.CrossRefGoogle Scholar
  300. —&—. 1979a. Effect of light intensity on growth and establishment of seedlings ofTypha angustata. Pol. Arch. Hydrobiol.26:495–500.Google Scholar
  301. —&—. 1979b. Effect of water regimes on the growth and establishment ofTypha angustata seedlings. Int. J. Ecol. Environm. Sci.5: 69–74.Google Scholar
  302. —&—. 1980. A note on the identity ofTyphaelephantina Roxb. Aquatic Bot.9:381–387.CrossRefGoogle Scholar
  303. —,S.P.S. Khushwaha &B. Gopal. 1990. Autotoxic effect onPhragmites karka (Retz) Trin. ex Steud. plant on its seed germination. Geobios17: 287–288.Google Scholar
  304. — &V.N. Pradhan. 1983. Study on growth and biomass of underground organs ofTypha angustata Bory et Chaub. Hydrobiologia98: 147–151.CrossRefGoogle Scholar
  305. Sheldon, S.P. 1987. The effects of herbivorous snails on submerged macrophyte communities in Minnesota lakes. Ecology68:1920–1931.CrossRefGoogle Scholar
  306. Silverstein, R.M. & J.B. Simeone (eds.). 1983. Special issue: American Chemical Society Symposium on Allelopathy. J. Chem. Ecol.9:1–935.Google Scholar
  307. Simberloff, D. 1983. Competition theory, hypothesis testing and other community ecological buzzwords. Amer. Naturalist122: 626–635.CrossRefGoogle Scholar
  308. Simpson, P.S. &J.W. Eaton. 1986. Comparative studies of the photosynthesis of the submerged macrophyteElodea canadensis and the filamentous algaeCladophora glomerata andSpirogyra sp. Aquatic Bot.24: 1–12.CrossRefGoogle Scholar
  309. Singh, D. &R.K. Kohli. 1992. Reasons of poor under floor vegetation ofEucalyptus. Pages 114–117, in P. Tauro & S.S. Narwal (eds.) Proc. first nat. symp. allelopathy in agroecosystems. Indian Society of Allelopathy, Haryana Agric. University, Hissar, India.Google Scholar
  310. Singh, Mohan. 1992. Studies on growth, competition and allelopathic interactions among aquatic macrophytes. Ph.D. thesis, University of Rajasthan, Jaipur, India.Google Scholar
  311. Singh, S.P. 1968. Presence of growth inhibitor in the tubers of nutgrass (Cyperus rotundus L.). Proc. Indian Acad. Sci.67:18–23.Google Scholar
  312. Singhvi, N.R. &K.D. Sharma. 1984. Allelopathic effects ofLudwigia adscendens Linn, andIpomoea aquatica Forsk. on seedling growth of pearlmillet (Pennisetum typhoideum Rich.). Trans. Isdt. and Ucds.9(2): 95–100.Google Scholar
  313. Sinhababu, A. &D.P. Kushari. 1984. Effect of leaf leachates ofPolyalthialongifolia on the growth and nitrogen fixation ofAzolla pinnata. Hydrobiol. Bull.18(2): 103–108.CrossRefGoogle Scholar
  314. Sircar, P.K. S. Banerjee &S.M. Sircar. 1973. Gibberellin like activity in the shoot extract of water hyacinth (Eichhorniacrassipes). Indian J. Agric. Sci.43: 1–8.Google Scholar
  315. Sircar, S.M. &R. Chakraverty. 1961. The effect of growth regulating substances of the root extract of water hyacinth (Eichhornia speciosa Kunth.) on jute (Corchorus capsularis Linn.). Curr. Sci.11:428–430.Google Scholar
  316. -&-Sircar, S.M. & R. Chakraverty. The effect of gibberellic acid and growth regulating substances of the root extract of water hyacinth (Eichhornia crassipes) on rice and gram. Indian J. Pl. Physiol.5: 257–263.Google Scholar
  317. — &M. Kundu. 1959. Effect of root extract of water hyacinth (Eichhornia speciosa Kunth) on the growth and flowering of rice. Sci. & Cult.24: 332–333.Google Scholar
  318. —&—. 1960. Growth regulating properties of root extract ofEichhornia speciosa Kunth. Physiol. Pl.13: 56–63.CrossRefGoogle Scholar
  319. Smart, R.M. &J.W. Barko. 1989. Competitive interactions of submersed aquatic macrophytes in relation to water chemistry and other environmental conditions. Pages 159–164, in Proceedings of the 23rd Annual meeting on the aquatic plant control research program. MP-A-89-1. USAE-WES, Vicksburg, MS.Google Scholar
  320. Smith, C.S. 1978. Phosphorus uptake by roots and shoots ofMyriophyllumspicatum L. Ph.D. thesis, Univ. of Wisconsin, Madison.Google Scholar
  321. Smock, L.A. &D.L. Stoneburner. 1980. The response of macroinvertebrates to aquatic macrophyte decomposition. Oikos33:397–403.CrossRefGoogle Scholar
  322. Sondergaard, M. 1983. Hetrotrophic utilization and decomposition of extracellular carbon released by the aquatic angiospermLittorella uniflora (L.) Aschers. Aquatic Bot.16: 59–75.CrossRefGoogle Scholar
  323. —. 1988. Photosynthesis of aquatic plants under natural conditions. Pages 63–111, in J.J. Symoens (ed.) Vegetation of inland waters. Handbook of vegetation science 15/1. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  324. Spence, D.H.N. 1982. The zonation of plants in freshwater lakes. Advan. Ecol. Res.12: 37–125.Google Scholar
  325. Spencer, N.R. &M. Lekic. 1974. Prospects for biological control of Eurasian Watermilfoil. Weed Sci.22(4): 401–404.Google Scholar
  326. Spencer, D.F. 1988. Competition between two pondweeds: Influence ofP. pectinatus tuber size. Internat. Symposium on physiological ecology of aquatic plants, aarhus, Denmark. Abstracts.Google Scholar
  327. — &W. van Vierssen. 1988. Competition and the distribution of two submersed macrophytes in an irrigation canal. Bull. Ecol. Soc. Amer.69(2): 304.Google Scholar
  328. Spoehr, H.A., J.H.C. Smith, H.H. Strain, H.W. Milner & G.J. Hardin. 1949. Carnegie Inst. Washington Publ. 586. (cited from Rice 1984).Google Scholar
  329. Srivastava, P.R. &L.K. Das. 1974. Effect of certain aqueous plant extracts on the germination ofCyperus rotundus L. Sci. & Cult.40(7): 318–319.Google Scholar
  330. Stangenberg, M. 1968. Bacteriostatic effects of some algae and Lemna minor extracts. Hydrobiologia32:88–96.Google Scholar
  331. Steeman-Nielsen, E. 1947. Photosynthesis of aquatic plants with special reference to the carbon sources. Dansk Botanisk Arkiv.12: 1–71.Google Scholar
  332. -. 1973. Hydrobiologi. Polyteknisk Forlag, Lyngby.Google Scholar
  333. Sterry, P.R., J.D. Thomas &R.L. Patience. 1983. Behavioural responses ofBiomphalaria glabrata (Say) to chemical factors from aquatic macrophytes including decayingLemnapaucicostata andCeratophyllumdemersum. Freshwater Biol.13:465–476.CrossRefGoogle Scholar
  334. —,—&—. 1985. Changes in the concentration of short-chain carboxylic acids and gases during decomposition of the aquatic macrophytesLemnapaucicostata andCeratophyllum demersum. Freshwater Biol.15: 139–153.CrossRefGoogle Scholar
  335. Stevens, K.L. &G.B. Merrill. 1980. Growth inhibitors from spikerush. J. Agric. Food Chem.28: 644–646.CrossRefGoogle Scholar
  336. Steward, K.K. 1988. Competitive interaction between monoeciousHydrilla andVallisneria on soils of varying fertility. Final Report USDI-NPS/USDA-ARS, Fort Lauderdale, FL.Google Scholar
  337. Stom, D.I. &R. Roth. 1981. Some effects of polyphenols on aquatic plants: 1. Toxicity of phenols in aquatic plants. Bull. Environm. Contam. Toxicol.27: 332–337.CrossRefGoogle Scholar
  338. Su, K.L., Y. Abul-Hajj &E.J. Staba. 1973a. Antimicrobial effects of aquatic plants from Minnesota. Lloydia36: 80–87.PubMedGoogle Scholar
  339. —. 1973. Toxicity, anti-neoplastic and coagulation effects of aquatic plants from Minnesota. Lloydia36: 99–102.PubMedGoogle Scholar
  340. —,—,— &Y. Abul-Hajj. 1973b. Preliminary chemical studies of aquatic plants from Minnesota. Lloydia35: 72–79.Google Scholar
  341. Sutton, D.L. 1986a. Growth of hydrilla (Hydrilla verticillata) in established stands of spikerush and slender arrowhead. J. Aquatic Pl. Managern.24: 16–20.Google Scholar
  342. —. 1986b. Influence of allelopathic chemicals on sprouting of hydrilla tubers. J. Aquatic Pl. Managern.24: 88–90.Google Scholar
  343. —. 1990. Growth ofSagittariasubulata and interaction with hydrilla. J. Aquatic Pl. Managern.28: 20–22.Google Scholar
  344. —,R.C. Littel &K.A. Langeland. 1980. Intraspecific competition ofHydrilla verticillata. Weed Sci.28:425–428.Google Scholar
  345. — &K.M. Portier. 1989. Influence of allelochemicals and aqueous plant extracts on growth of duckweed. J. Aquatic Pl. Managern.27:90–95.Google Scholar
  346. —&—. 1991. Influence of spikerush plants on growth and nutrient content of hydrilla. J. Aquatic Pl. Managern.29: 6–11.Google Scholar
  347. Svedang, M.U. 1990. The growth dynamics ofJuncus bulbosus - a strategy to avoid competition. Aquatic Bot.37:123–138.CrossRefGoogle Scholar
  348. Swindale, D.N. &J.T. Curtis. 1957. Phytosociology of the larger submerged plants in Winsconsin lakes. Ecology38:397–407.CrossRefGoogle Scholar
  349. Szczepanska, W. 1971. Allelopathy among the aquatic plants. Pol. Arch. Hydrobiol.18: 17–30.Google Scholar
  350. —. 1977a. Interactions ofPhragmites communis Trin. andCarex hudsonii Benett. Ekol. Pol.24: 431–436.Google Scholar
  351. —. 1977b. The effect of remains of helophytes on the growth ofPhragmitescommunis Trin. andTypha latifolia L. Ekol. Pol.25:437–445.Google Scholar
  352. —. 1987. Allelopathy in helophytes. Arch. Hydrobiol. Beih. Ergebn. Limnol.27:173–179.Google Scholar
  353. — &A.J. Szczepanski. 1982. Interactions betweenPhragmites australis (Cav.) Trin. ex Steud. andTypha latifolia L. Ekol. Pol.30(1-2): 165–186.Google Scholar
  354. Szczepanski, A.J. 1971. Allelopathy and other factors controlling the macrophytes production. Hidrobiologia12:193–197.Google Scholar
  355. —. 1977. Allelopathy as a means of biological control of water weeds. Aquatic Bot.3: 193–197.CrossRefGoogle Scholar
  356. Tag el Seed, M. 1978. Effect of pH on the nature of competition betweenE. crassipes andPistia stratiotes. J. Aquatic Pl. Managern.16: 53–57.Google Scholar
  357. Taheruzzaman, Q. &D.P. Kushari. 1991. Influence of leaf leachate enriched water of neem (Azadirachta indica A.Jun.) and shirish (Albizzia lebbek Benth.) on the growth ofEichhornia crassipes (Mart.) Solms. Aquatic Bot.40: 1–9.CrossRefGoogle Scholar
  358. Thomas, J.D. 1987. An evaluation of the interactions between freshwater pulmonate snail hosts of human schistosomes and macrophytes. Phil. Trans. R. Soc. London B315:75–125.CrossRefGoogle Scholar
  359. —. 1990. Mutualistic interactions in freshwater modular systems with molluscan components. Adv. Ecol. Res.20:125–178.Google Scholar
  360. — &A.I. Tait. 1984. Control of the snail hosts of schistosomiasis by environmental manipulation: A field and laboratory appraisal in the Ibadan area of Nigeria. Phil. Trans. R. Soc. London B305:201–253.CrossRefGoogle Scholar
  361. Thompson, K. 1987. The resource ratio hypothesis and the meaning of competition. Funct. Ecol.1: 297–303.CrossRefGoogle Scholar
  362. Tilman, D. 1987. On the meaning of competition and the mechanism of competitive superiority. Funct. Ecol.1:304–315.CrossRefGoogle Scholar
  363. —. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, N.J.Google Scholar
  364. Titus, J.E. &M.S. Adams. 1979. Coexistence and the comparative light relations of the submersed macrophytes,Myriophyllum spicatum (L.) andVallisneria americana Michx. Oecologia40: 273–286.CrossRefGoogle Scholar
  365. — &M.D. Stephens. 1983. Neighbour influences and seasonal growth patterns forVallisneria americana in a mesotrophic lake. Oecologia56:23–29.CrossRefGoogle Scholar
  366. Tripathi, R.S. &P.P. Srivastava. 1970. Effect of aqueous plant extracts on the seed germination ofLycopersicumesculentum Mill. Sci. & Cult.36(1): 59–60.Google Scholar
  367. Tucker, C.S. 1983. Culture density and productivity ofPistia stratiotes. J. Aquatic Pl. Managem.21: 40–41.Google Scholar
  368. Tüxen, R. &E. Preising. 1942. Grundbegriffe und Methoden zum Studium der Wasser- und Sumpfpflanzengesellschaften. Dtsch. Wasserwirtschaft37:10–17, 57–69.Google Scholar
  369. Underwood, G.J.C. 1989. Interactions between freshwater pulmonate snails, macrophytes and epiphytes. D. Phil. thesis, Univ. of Sussex, Sussex, U.K.Google Scholar
  370. Van Aller, R.T., L.R. Clark, G.F. Pessoney &V.A. Rogers. 1983. A prostaglandin like fatty acid from a species in the cyperaceae. Lipids18(9): 617–621.CrossRefGoogle Scholar
  371. —,G.F. Pessoney, V.A. Rogers, E.J. Watkins &H.G. Leggett. 1985. Oxygenated fatty acids: A class of allelochemicals from aquatic plants. Pages 387–400, in A.C. Thompson (ed.) The chemistry of allelopathy. ACS Symposium series 268. American Chemical Society, Washington, D.C. USA.Google Scholar
  372. Van, T.K., W.T. Haller &G. Bowes. 1976. Comparison of the photosynthetic characteristics of three submerged aquatic plants. Pl. Physiol.58:761–768.CrossRefGoogle Scholar
  373. Van der Valk, A.G. 1981. Succession in wetlands: a Gleasonian approach. Ecology62:688–696.CrossRefGoogle Scholar
  374. —. 1987. Vegetation dynamics of freshwater wetlands: A selective review of the literature. Arch. Hydrobiol. Beiheft. Ergebn. limnol.27:27–40.Google Scholar
  375. — &C.B. Davis. 1976. Changes in the composition, structure and production of plant communities along a perturbed wetland coenocline. Vegetatio32: 87–96.CrossRefGoogle Scholar
  376. —&—. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marsheds. Ecology59:322–335.CrossRefGoogle Scholar
  377. van Montfrans, J., R.J. Orth &S.A. Vay. 1982. Primary studies of grazing byBittium varium on eelgrass periphyton. Aquatic Bot.14:75–89.CrossRefGoogle Scholar
  378. —,R.L. Wetzel &R.J. Orth. 1984. Epiphyte-grazer relationships in seagrass meadows: Consequences of seagrass growth and production. Estuaries7:289–309.CrossRefGoogle Scholar
  379. Van Schayck, I.C.P. 1985. Laboratory studies on the relation between aquatic vegetation and the presence of two Bilharzia-bearing snail species. J. Aquatic Pl. Managern.23: 87–91.Google Scholar
  380. Wajih, S.A. &A.C. Sinha. 1980. Growth regulating substances in the algal extracts ofChara zeylanica Kl. ex Willd. Indian J. Ecol.7:158–160.Google Scholar
  381. Wallace, J.W., T.J. Mabry &R.E. Alston. 1969. Phytochemistry8: 93.CrossRefGoogle Scholar
  382. Weidenhamer, J.D., D.C. Hartnett &J.T. Romeo. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol.26: 613–624.CrossRefGoogle Scholar
  383. Werner, D. &H. Pawlitz. 1978. Bull. Environ. Contam. Toxicol.20: 303. (cited from Stom & Roth, 1981).PubMedCrossRefGoogle Scholar
  384. Westlake, D.F. (coordinator) 1980. Primary production. Pages 141–246, in E.D. LeCren & R.H. Lowe-McConnell (eds) The functioning of freshwater ecosystems. Cambridge University Press, London, U.K.Google Scholar
  385. -. 1981. Temporal changes in aquatic macrophytes and their environment. Dynamique de populations et qualite de l’ Eau.: 110–138.Google Scholar
  386. Wetzel, R.G. 1969. Factors influencing photosynthesis and excretion of dissolved organic matter by aquatic macrophytes in hard water lakes. Verh. Int. Verein. Limnol.17: 72–85.Google Scholar
  387. —. 1983a. Attached algal substrate interactions. Fact or myth and when and how? Pages 207–215, in R.G. Wetzel (ed.) Periphyton of freshwater ecosystems. Develop. Hydrobiol. 17. W. Junk, The Hague.Google Scholar
  388. —. 1983b. Limnology. 2ed. Saunders College Publishing, Philadelphia, PA.Google Scholar
  389. —. 1988. Water as an environment for plant life. Pages 113–154, in J.J. Symoens (ed.) Vegetation of inland waters. Handbook of vegetation science 15/1. Kluwer Academic Publishers, Dordrecht.Google Scholar
  390. —. 1990. Land-water interface: Metabolic and limnologie regulators. Verh. Int. Ver. Limnol.24: 6–24.Google Scholar
  391. — &R.A. Hough. 1973. Productivity and role of aquatic macrophytes in lakes: An assessment. Pol. Arch. Hydrobiol.20: 9–19.Google Scholar
  392. Whigham, D.F., R.L. Simpson &M.A. Leck. 1979. The distribution of seeds, seedlings and established plants of Arrow arum (Peltandra virginica (L.) Kunth.) in a freshwater tidal wetland. Bull. Torrey Bot. Club106(3): 193–199.CrossRefGoogle Scholar
  393. Whittaker, R.H. &P.P. Feeney. 1971. Allelochemics: Chemical interactions between species. Science171:757–770.PubMedCrossRefGoogle Scholar
  394. Willaman, J.J. &B.G. Schubert. 1961. Alkaloid bearing plants and their contained alkaloids. Tech. Bull. 1234. U.S. Dept Agric, Washington, D.C.Google Scholar
  395. Williamson, G.B. 1990. Allelopathy, Koch’s postulates and the neck riddle. Pages 143–162, in J.B. Grace & D. Tilman (eds.) Perspectives on plant competition. Academic Press, San Diego, CA, USA.Google Scholar
  396. Wilson, S.D. &P.A. Keddy. 1985a. The shoreline distribution ofJuncuspelocarpus along a gradient of exposure to waves: An exprimental study. Aquatic Bot.21:277–284.CrossRefGoogle Scholar
  397. —&—. 1985b. Plant zonation on a shoreline gradient: Physiological response curves of component species. J. Ecol.73: 851–860.CrossRefGoogle Scholar
  398. —&—. 1986a. Measuring diffuse competition along an environmental gradient: Results from a shoreline plant community. Amer. Naturalist127:862–869.CrossRefGoogle Scholar
  399. —&—. 1986b. Species competitive ability and position along a natural stress/disturbance gradient: Results. Ecology67: 1236–1242.CrossRefGoogle Scholar
  400. —&—. 1991. Competition, survivorship and growth in macrophyte communities. Freshwater Biol.25: 331–337.CrossRefGoogle Scholar
  401. Wium-Anderson, S. 1987. Allelopathy among aquatic plants. Arch. Hydrobiol. Beih., Ergebn. Limnol.27:167–172.Google Scholar
  402. —,U. Anthoni, C. Christopherson &G. Houen. 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos39:187–190.CrossRefGoogle Scholar
  403. —&— &G. Houen. 1983. Elemental sulphur, a possible allelopathic compound fromCeratophyllumdemersum. Phytochemistry22(11): 2613.CrossRefGoogle Scholar
  404. — &J. Borum. 1980. Biomass and production of eelgrass (Zostera marina L.) in the Oresund, Denmark. Ophelia19(1): 49–55.Google Scholar
  405. —&— &J. Borum. 1984. Biomass variation and autotrophic production of an epiphyte-macrophyte community in a coastal Danish area. l. Eelgrass (Zostera marina L.) biomass and net production. Ophelia23(1): 33–46.Google Scholar
  406. Wolek, J. 1974. A preliminary investigation on interactions (competition, allelopathy) between some species ofLemna, Spirodela andWolffla. Ber. Geobot. Inst. Eidg. Techn. Hochschule, Stift. Rubel,42:140–162.Google Scholar
  407. —. 1979. Competiton and allelopathybetweenSpirodelapolyrrhiza andWolffia arrhiza. Fragm. Flor. Geobot. (Cracow)25(2): 281–350.Google Scholar
  408. —. 1984. Intraspecific variation and the competitive abilities ofSpirodela polyrrhiza (L.) Schleiden. Ekol. Pol.32: 637–649.Google Scholar
  409. Wolfe, J.M. &E.L. Rice. 1979. Allelopathic interactions among algae. J. Chem. Ecol.5: 533–542.CrossRefGoogle Scholar
  410. Wooten, J.W. &S.D. Elakovich. 1991. Comparisons of potential allelopathy of seven freshwater species of spikerushes (Eleocharis). J. Aquatic Pl. Managem.29:12–15.Google Scholar
  411. Wrobel, J.T. 1967.Nuphar alkaloids. Pages 441–465, in R.H.F. Manske (ed.) The alkaloids: chemistry and physiology. Academic Press, N.Y.Google Scholar
  412. Yamasaki, S. 1990. Population dynamics in overlapping zones ofPhragmites australis andMiscanthus saccharifolius. Aquatic Bot.36:367–377.CrossRefGoogle Scholar
  413. Yan, N.D., G.E. Miller, I. Wile &G.G. Hitchin. 1985. Richness of aquatic macrophyte floras of softwater lakes of differing pH and trace metal content in Ontario, Canada. Aquatic Bot.23: 27–40.CrossRefGoogle Scholar
  414. Yeo, R.R. 1972. Control of rooted submerged aquatic weeds with competitive plants. Weed Science Society of America, Meeting Abstracts, St Louis, MO.Google Scholar
  415. -. 1976. Naturally occurring antagonistic relationships among aquatic plants that may be useful in their management. Pages 290–293,in Proceedings IV Intern. Symp. Biol. Control Weeds, Gainesville, FL.Google Scholar
  416. —. 1980. Spikerush may help control water weeds. Calif. Agric.34: 13–14.Google Scholar
  417. —. 1980. Life history and ecology of dwarf spikerush (Eleocharis coloradoensis). Weed Sci.28:263–272.Google Scholar
  418. — &T.W. Fisher. 1970. Progress and potential for biological weed control with fish, pathogens, competitive plants and snails. Pages 450–463 in Technical papers of FAO international conference on weed control, June 22-July 1. Weed Science Society of America, Davis, CA.Google Scholar
  419. — &J. R. Thurston. 1984. The effect of dwarf spikerush (Eleocharis coloradoensis) on several submersed aquatic weeds. J. Aquatic Pl. Managern.22: 52–56.Google Scholar
  420. Yoda, K., T. Kira, H. Ogawa &K. Hozumi. 1963. Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI). J. Biol., Osaka City Univ.14:107–129.Google Scholar
  421. Zapata, O. &C. McMillan. 1979. Phenolic acids in seagrasses. Aquatic Bot.7: 307–317.CrossRefGoogle Scholar
  422. Zutshi, D.P. &K.K. Vass. 1976. Ecology of macrophytic vegetation of Kashmir lakes. Pages 141–146, in C.K. Varshney & J. Rzoska (eds.) Aquatic weeds in south east Asia. W. Junk, The Hague.Google Scholar

Copyright information

© The New York Botanical Garden 1993

Authors and Affiliations

  • Brij Gopal
    • 1
  • Usha Goel
    • 1
  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations