Skip to main content
Log in

Competition and allelopathy in aquatic plant communities

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The paper reviews the published literature on the studies of competition and allelopathy in aquatic plant communities. Taking a broader view of the community, the studies on interactions between macrophytes and microphytes, macrophytes and macro-invertebrates and microbial communities are also reviewed. The role of these interactions in the structure and dynamics of aquatic communities has been discussed in light of the current hypotheses concerning competition in terrestrial communities. The available information suggests that the aquatic plants of various growth forms differ greatly among themselves in their responses and adaptations to competition and allelopathy. The possible application of these interactions in biological control of plant pests and in agriculture is also summarized.

We conclude that the observed differences in these interactions between the terrestrial and aquatic environment are due to the effects of water as a non-resource variable as well as due to special adaptive characteristics of aquatic plants. Further we hypothesize that the aquatic plants adopt both competitive and allelopathic strategies under different conditions and in interactions with different plants.

The review highlights that our knowledge of both competition and allelopathy among aquatic plant communities is inadequate and fragmentary, and therefore, both extensive and intensive studies are required.

Zusammenfassung

Dieser Artikel bespricht die über Studien zu Konkurrenz- und Allelopathieverhalten bei Wasserpflanzengeschaften veröffentlichte Literatur. In einem breiten Überblick über die Gesellschaft werden auch die Studien zu Interaktionen zwischen Makrophyten und Mikrophyten, Makrophyten und Makro-invertebraten und Mikro-bengemeinschaften erötert. Die Rolle dieser Interaktionen in der Struktur und Dynamik von Lebensgemeinschaften im Wasser wird im Licht aktueller Hypothesen zum Thema Konkurrenz bei Legensgemeinschaften auf dem Land diskutiert. Das vorhandenen Daten lassen vermuten, daß sich Wasserpflanzen verschiedener Wachstumsformen in ihrem Reaktions- und Anpassungsverhalten hinsichtilich Konkurrenze und Allelopathie beträchtlich voneinander unterschieden. Die mögliche Anwendung dieser Interaktionen in der biologischen Schädlingskontrolle und der Landwirtschaft wird ebenfalls zusammengefaßt.

Es wird deutlich, daß die bei diessen Interaktionen zwischen einer Land- und einer Wasserumgebung beobachteten Unterschiede sowohl auf die Wirkungen von Wasser als einer Nicht-Ressourcen-Variablen (“non-resource variables”) als auch auf das besondere Anpassungsverhalten von Wasserpflanzen zurückzuführen sind. Im weiteren stellen wir die Hypothese auf, daß Wasserpflanzen unter bestimmten Bedingungen und in ihren Interaktionen mit verschiedenen Pflanzen sowohl Kompetitive als auch allelopathische Strategien einsetzen.

Der Überblick hebt hervor, daß unsere Kenntnisse von Konkurrenze und Al-lelopathie bei Wasserpflanzen unvollständig und unzulänglich sind und darum sowohl extensive als auch intensive Studien erfordern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abu Gideiri, Y.B. &A.M. Yousif. 1974. The influence ofEichhornia crassipes Solms. on planktonic development in the White Nile. Arch. Hydrobiol.74:463–467.

    Google Scholar 

  • Achhireddy, N.R. &Megh Singh. 1984. Allelopathic effects of Lantana (Lantana camara) on milkweedvine (Morrenia odorata). Weed Sci.32: 757–761.

    Google Scholar 

  • Achmatowicz, O. & Z. Bellen. 1962. Tetrahedron Lett. 1121.

  • Agami, M. &K.R. Reddy. 1989. Inter-relationships betweenSalvinia rotundifolia andSpirodela polyrhiza at various interaction stages. J. Aquatic PI. Managem.27: 96–102.

    Google Scholar 

  • —&—. 1990. Competition for space betweenEichhornia crassipes (Mart.) Solms. andPistia stratiotes L. cultured in nutrient enriched water. Aquatic Bot.38: 195–208.

    Article  Google Scholar 

  • —&—. 1991. Inter-relationship betweenEichhornia crassipes (Mart.) Solms andHydrocotyle umbellata L. Aquatic Bot.39: 147–157.

    Article  Google Scholar 

  • —&—. 1985. Inter-relationships betweenNajas marina L. and three other species of aquatic macrophytes. Hydrobiologia126:169–173.

    Article  Google Scholar 

  • Akhtar, S. 1978. Some molluscs associated with water hyacinth. Pakistan J. Sci.30: 20–22.

    Google Scholar 

  • Aliotta, G., N. Della Greca, P. Monaco, G. Pinto, A. Pollio &L. Previtera. 1990. In vito algal growth inhibition by phytotoxins ofTypha latifolia L. J. Chem. Ecol.16:2637–2646.

    Article  CAS  Google Scholar 

  • Allanson, B.R. 1973. The fine structure of the periphyton ofChara sp. andPotamogeton natans from Wytham pond, Oxford and its significance to the macrophyte periphyton metabolic model of R.G. Wetzel and H.L. Allen. Freshwater Biol.3:535–541.

    Article  Google Scholar 

  • Allen, E.D. &D.H.N. Spence. 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol.87: 269–283.

    Article  CAS  Google Scholar 

  • Allen, H.L. 1971. Primary productivity, chemo-organography and nutritional interactions of epiphytic algae and bacteria on macrophytes in a lake. Ecol. Monogr.41: 97–127.

    Article  Google Scholar 

  • Alsaadawi, I.S., E.L. Rice &T.K.B. Karns. 1983. Allelopathic effects ofPolygonumaviculare L. III. Isolation, characterization and biological phytotoxins other than phenols. J. Chem. Ecol.9(6): 761–773.

    Article  CAS  Google Scholar 

  • Anderson, L.W.J. 1985. Use of bioassays for allelochemicals in aquatic plants. Pages 351–370,in A.G. Thompson (ed.) The chemistry of allelopathy. ACS Symposium series 268. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Anderson, M.R. &J. Kalff. 1986. Regulation of submersed aquatic plant distribution in a uniform area of a weedbed. J. Ecol.74:953–961.

    Article  Google Scholar 

  • Anthoni, U. &A. Christophersen. 1982. Synthesis of 4-methylthio-l,2-dithiolaneand5-methythio-1,2,3-Trithiane. Two naturally occuring bioactive compounds. Tetrahedron38(15): 2425–2427.

    Article  CAS  Google Scholar 

  • —,C. Christophersen, J.O. Madsen, S. Wium Andersen &N. Jacobsen. 1980. Biologically active sulphur compounds from the green algaChara globularis. Phytochemistry19:1228–1229.

    Article  CAS  Google Scholar 

  • Ashton, F.M. &S.R. Bissel. 1987. Influence of temperature and light on dwarf spikerush and slender spikerush growth. J. Aquatic P1. Managern.25:4–7.

    Google Scholar 

  • —,J.M. Ditomasco &L.W.J. Anderson. 1985 Spikerush (Eleocharis spp.): A source of allelopathics for the control of undesirable aquatic weeds. J. Aquatic P1. Managem.22: 52–56.

    Google Scholar 

  • Austin, M.P. 1990. Community theory and competition in vegetation. Pages 215–238,in J.B. Grace & D. Tilman (eds.) Perspectives on plant competition. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Bachmann, A. 1921. A programme to be carried out in Familla against Anopheles and their larvae (in Spanish). An. Dept Nac. Higiene, Buenos Aires27:117–137.

    Google Scholar 

  • Barko, J.W. &R.M. Smart. 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biol.10: 229–238.

    Article  CAS  Google Scholar 

  • —&—. 1981. Comparative influence of light and temperature on the growth of selected submersed macrophytes. Ecol. Monogr.51:219–235.

    Article  Google Scholar 

  • Barltrop, J. &D.F. Martin. 1983. Evidence for photodynamic action by a naturally occurringHydrilla growth inhibitor. J. Environm. Sci. Health, A.18: 29–36.

    Google Scholar 

  • Bate-Smith, E.C. 1968. Phytochemistry7: 459. (cited from McClure, 1970).

    Article  CAS  Google Scholar 

  • Begon, M., J.L. Harper &C.R. Townsend. 1986. Ecology: Individuals, populations and communities. Blackwells, Oxford, U.K.

    Google Scholar 

  • Bell, David J. 1974. The influence of osmotic pressure in tests for allelopathy. Trans. Illinois State Acad. Sci.67: 312–317.

    Google Scholar 

  • Bell, D.T. &C.H. Muller. 1973. Dominance of California annual grasslands byBrassica nigra. Amer. Midl. Naturalist90:277–299.

    Article  Google Scholar 

  • Bel’tyukova, K.C. &L.T. Pastushenko. 1963. Antibiotic effect of nupharine on pathogenic bacteria in vitro and in vivo. Mikrobiol. Zh. Akad. Nauk. Ukr. RSR25: 36. Chem. Abstr.59:5536f.

    CAS  Google Scholar 

  • Best, E.P.H. 1988. The phytosociological approach to the description and classification of aquatic macrophytic vegetation. Pages 155–182,in J.J. Symoens (ed.) Vegetation of inland waters. Handbook of vegetation science 15/1. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Bhanja, A., R.K. Mukherjee, N.K. Roy, S. Banerjee, P.K. Sircar &S.M. Sircar. 1968. Isolation and identification of growth substances in the root of water hyacinth (Eichhornia crassipes (Mart.) Solms.). Proc. int. symp. plant growth substances: 47–56. Botany Dept., University Calcutta, Calcutta, India.

    Google Scholar 

  • Bjorndahl, G. 1983. Structure and biomass ofPhragmites stands. Ph.D. thesis, University of Goteborg, Sweden.

    Google Scholar 

  • Blindlow, I. 1987. The composition and density of epiphyton on several species of submerged macrophytesthe neutral substrate hypothesis tested. Aquatic Bot.29: 157–168.

    Article  Google Scholar 

  • Bonasera, J., J. Lynch &M.A. Leck. 1979. Comparison of the allelopathic potential of four marsh species. Bull. Torrey Bot. Club106: 217–222.

    Article  Google Scholar 

  • Bornkamm, R. 1970. Über den Einfluss der Konkurrenz auf die Substanzproduktion und den N-gehalt der Wettbewerbspartner. Flora159: 84–104.

    Google Scholar 

  • Bowes, G. 1987. Aquatic plant photosynthesis: strategies that enhance carbon gain. Pages 79–98,in R.M.M. Crawford (ed.) Plant life in aquatic and amphibious habitats. Blackwells, Oxford, U.K.

    Google Scholar 

  • Brammer, E.S. 1979. Exclusion of phytoplankton in the proximity of dominant water soldier (Stratiotesaloides). Freshwater Biol.9:233–249.

    Article  Google Scholar 

  • Brönmark, C. 1985. Interactions between macrophytes, epiphytes and herbivores: an experimental approach. Oikos45:26–30.

    Article  Google Scholar 

  • —. 1989. Interactions between epiphytes, macrophytes, and freshwater snails: a review. J. Mollusc. Stud.55: 299–311.

    Article  Google Scholar 

  • Bulthuis, D.A. &Wm. J. Woelkerling. 1983. Biomass accumulation and shading effects of epiphytes of the seagrass,Heterozostera tasmanaica, in Victoria, Australia. Aquatic Bot.16:137–148.

    Article  Google Scholar 

  • Burkholder, J.A. &R.G. Wetzel. 1990. Alkaline phosphatase and algal biomass on natural and artificial plants in an oligotrophic lake: Reevaluation of the role of macrophytes as a phosphorus source for epiphytes. Limnol. & Oceanogr.35:432–443.

    Google Scholar 

  • Buttery, B.R. &J.M. Lambert. 1965. Competition betweenGlyceria maxima andPhragmites communis in the region of Surlingham Broad. 1. The competition mechanism. J. Ecol.53: 163–182.

    Article  Google Scholar 

  • Carignan, &J. Kalff. 1982. Phosphorus release by submersed macrophytes: Significance to epiphyton and phytoplankyton. Limnol. & Oceanogr.27:419–427.

    CAS  Google Scholar 

  • Carter, M.F. &J.C. Grace. 1986. Relative effects ofJusticia americana litter on germination, seedlings and established plants ofPolygonum lapathifolium. Aquatic Bot.23:341–349.

    Article  Google Scholar 

  • Cattaneo, A. 1983. Grazing on epiphytes. Limnol. & Oceanogr.28:124–132.

    Article  Google Scholar 

  • Center, T.D. &N.R. Spencer. 1981. The phenology and growth of water hyacinth (Eichhornia crassipes (Mart.) Solms.) in a eutrophic north-central Florida lake. Aquatic Bot.10:1–32.

    Article  Google Scholar 

  • Chadwick, M.J. &M. Obeid. 1966. A comparative study of the growth ofEichhornia crassipes Solms. andPistia stratiotes L. in water culture. J. Ecol.54: 563–575.

    Article  Google Scholar 

  • Chambers, P.A. 1987. Light and nutrients in the control of aquatic plant community structure. II. In situ observations. J. Ecol.75:621–628.

    Article  Google Scholar 

  • — &J. Kalff. 1987. Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. J. Ecol.75:611–619.

    Article  Google Scholar 

  • — &E. E. Prepas. 1990. Competition and coexistence in submerged aquatic plant communities: the effects of species interactions versus abiotic factors. Freshwater Biol.23: 541–550.

    Article  Google Scholar 

  • Cheng, T.S. &D.N. Riemer. 1988. Allelopathy in threesquare burreed (Sparganium americanum) and American eelgrass (Vallisneriaamericana). J. Aquatic P1. Managern.26: 50–55.

    Google Scholar 

  • —&—. 1989. Characterization of allelochemicals in American eelgrass. J. Aquatic P1. Managern.27: 84–89.

    Google Scholar 

  • Cherrett, J.M. (ed.) 1989. Ecological concepts: the contribution of ecology to an understanding of the natural world. Blackwells, Oxford, U.K.

    Google Scholar 

  • Chou, C.H. 1980. Allelopathic researches in the subtropical vegetation in Taiwan. Comp. Physiol. Ecol.5: 222–234.

    CAS  Google Scholar 

  • —. 1990. The role of allelopathy in agroecosystems: Studies from tropical Taiwan. Pages 104–121,in Agroecology. Ecological studies 78. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • — &S.-J. Chiou. 1979. Autointoxication mechanism ofOryza sativa. II. Effects of culture treatments on the chemical nature of paddy soil and on rice productivity. J. Chem. Ecol.5: 839–859.

    Article  CAS  Google Scholar 

  • —,Y.-C. Chiang &H.H. Cheng. 1981. Autointoxication mechanism ofOryza sativa. III. Effect of temperature on phytotoxin production during rice straw decomposition in soil. J. Chem. Ecol.7:741–752.

    Article  CAS  Google Scholar 

  • —,M.L. Lee &H.I. Okaa. 1984. Possible allelopathic interaction betweenOryzaperennis andLeersiahexandra. Bot. Bull. Acad. Sin.25: 1–19.

    Google Scholar 

  • —,S.Y. Hwang, C.I. Peng, Y.C. Wang, F.H. Hsu &N.J. Chung. 1987. The selective allelopathic interaction of a pasture forest intercropping system in Taiwan. Pl. & Soil98:31–41.

    Article  CAS  Google Scholar 

  • Clatworthy, J.N. &J.L. Harper. 1962. The comparative biology of closely related species living in the same area. V. Inter and intraspecific interference within cultures ofLemna sp. andSalvinia natans. J. Exp. Bot.13: 307–324.

    Article  Google Scholar 

  • Cleland, C.F. &O. Tanaka. 1982. Influence of plant growth substances and salicylic acid on flowering and growth in the Lemnaceae (duckweeds). Aquatic Bot.13: 3–20.

    Article  CAS  Google Scholar 

  • Clements, F.E. 1904. The development and structure of vegetation. Bot. Surv. Nebraska7: 5–175.

    Google Scholar 

  • —. 1916. Plant Succession. Analysis of the development of vegetation. Carnegie Inst. Washington Publ. 242. Washington, D.C.

    Google Scholar 

  • Clough, K.S., T.A. DeBusk &K.R. Reddy. 1987. Model water hyacinth and pennywort systems for the secondary treatment of domestic wastewater. Pages 775–781,in K.R. Reddy & W.H. Smith (eds) Aquatic plants for water treatment and resource recovery. Magnolia Publishing, Orlando, FL., USA.

    Google Scholar 

  • Connell, J.H. 1990. Apparent versus “real” competition in plants. Pages 9–26,in J.B. Grace & D. Tilman (eds) Perspectives on plant competition. Academic Press, San Diego, USA.

    Google Scholar 

  • Connor, E.F. &D. Simberloff. 1979. The assembly of species communities: chance or competition. Ecology60: 1132–1140.

    Article  Google Scholar 

  • —&—. 1983. Interspecific competition and species co-occurrence patterns on islands: use of null models and the evaluation of evidence. Oikos41:455–465.

    Article  Google Scholar 

  • Crawford, S.A. 1979. Farm pond restoration usingChara vulgaris vegetation. Hydrobiologia62: 17–31.

    CAS  Google Scholar 

  • Dale, D. 1992. An allomone in rice plant against stem borer. Pages 171–174,in P. Tauro & S.S. Narwal (eds) Proc. first nat. symp. allelopathy in agroecosystems. Indian Society of Allelopathy, Haryana Agric. University, Hissar, India.

    Google Scholar 

  • Dale, H.M. 1986. Temperature and light: the determining factors in maximum depth distribution of aquatic macrophytes in Ontario, Canada. Hydrobiologia133: 73–77.

    Google Scholar 

  • Darwin, C. 1859. The Origin of Species by Means of Natural Selection. Penguin Books, Harmonds-worth. (Reprinted ed. 1968).

  • Dazo, B.C., N.G. Hairston &I.K. Dawood. 1966. The ecology ofBulinus truncatus andBiomphalaria alexandrina and its implications for the control of Bilharziasis in the Egypt 49 Project Area. Bull. WHO35:339–356.

    PubMed  CAS  Google Scholar 

  • Della Greca, M., L. Mangoni, A. Molinaro, P. Monaco &L. Previtera. 1990. (20S)- 4 -methyl-24-methylenecholest-7-en-3-ol, an allelopathic sterol fromTypha latifolia. Phytochemistry29(6): 1797–1798.

    Article  CAS  Google Scholar 

  • DeBusk, T.A., J.H. Ryther, M.D. Hanisak &L.D. Williams. 1981. Effects of seasonality and plant density on the productivity of some freshwater macrophytes. Aquatic Bot.10: 133–142.

    Article  Google Scholar 

  • DeSilva, M.P., M.A. Pemadasa, I. Balasooriya, S.I. Abeygunawardena &C. Nanayakkara. 1984. A preliminary study of the interaction betweenEichhorniacrasssipes (Mart.) Solms. andSalvinia molesta Mitchell. Pages 298–303,in G. Thyagarajan (ed) Proc. int. conf. water hyacinth. United Nations Environment Programme, Nairobi.

    Google Scholar 

  • DeWit, C.T. 1960. On competition. Verslagen Landbouwk. Onderz.66: 1–82.

    Google Scholar 

  • Dey, B. 1982. Studies on weed biology ofEchinochloa crusgalli (L.) Beauv. and its competitive relationships with rice. Ph.D. thesis, North Eastern Hill University, Shillong, India.

    Google Scholar 

  • Dhillon, M.S., M.S. Mulla &Yin-Shen Hwang. 1982. Allelochemics produced by the hydrophyteMyriophyllum spicatum affecting mosquitoes and midges. J. Chem. Ecol.8(2): 517–526.

    Article  Google Scholar 

  • Docauer, D.M. 1983. A nutrient basis for the distribution of the Lemnacee. Ph.D. thesis, University of Michigan, Ann Arbor, MI.

    Google Scholar 

  • Dooris, G.M., P.M. Dooris &D.F. Martin. 1988. Effect of a naturally occurring growth inhibitor on the ultrastructure of hydrilla. J. Aquatic P1. Managern.26:72–73.

    Google Scholar 

  • Dooris, P.M. &D.F. Martin. 1981. Growth inhibition ofHydrilla verticillata by selected lake sediment extracts. Water Res. Bull.16: 112–117.

    Google Scholar 

  • —&—. 1982. Control of macrophytic growth by naturally produced substances. Pages 61–75,in E.O. Gangstad (ed.) Weed control methods for recreation facilities management. CRC Press, Boca Roton, FL., USA.

    Google Scholar 

  • —&—. 1985. Naturally occurring substances that inhibit the growth ofHydrilla verticillata. Pages 381–386,in A.C. Thompson (ed.) The chemistry of allelopathy. ACS Symposium series 268. American Chemical Society, Washington, D.C.

    Google Scholar 

  • —,W.S. Silver &D.F. Martin. 1982. Effect ofHydrilla verticillata growth inhibiting extracts upon the growth ofScenedesmus obliquus (an alga). J. Environm. Sci. Health, A.17: 639–646.

    Google Scholar 

  • Dorgelo, J. &K. Koning. 1980. Avoidance of macrophytes and additional notes on avoidance of the shore byAcanthodiaptomusdenticornis (Wierzejski 1887) from lake Pavin (Auvergne, France). Hydrobiol. Bull.14:196–208.

    Article  Google Scholar 

  • Drobot’ko, Y.G., E. Ya. Rashba, B.E. Aizenman, S.I. Zelepukha, S.I. Novikova &M.B. Kaganskaya. 1958. Antimicrobial activity of alkaloids obtained fromValeriana officinalis, Chelidoniummajus, Nupharluteum andAsarumeuropaeum. Antibiotiki 1958:22; Chem. Abstr.53:12589d.

    Google Scholar 

  • Drost, D.C. &J.D. Doll. 1980. The allelopathic effect of yellow nutsedge (Cyperus esculentus) on corn (Zea mays) and soybeans (Glycine max). Weed Sci.28: 229–233.

    Google Scholar 

  • Einhellig, F.A., G.R. Leather &L.L. Hobbs. 1985. Use ofLemna minor L. as a bioassay in allelopathy. J. Chem. Ecol.11:65–72.

    Article  CAS  Google Scholar 

  • Elakovich, S.D. 1989. Allelopathic aquatic plants for aquatic weed management. Biol. P1.31(6): 479–486.

    Google Scholar 

  • — &J.W. Wooten. 1987. An examination of the phytotoxicity of the water shield,Brasenia schreberi. J. Chem. Ecol.13:1935–1940.

    Article  Google Scholar 

  • —&—. 1989a. Allelopathic aquatic plants for aquatic plant management: a feasibility study. Aquatic Plant Control Program Tech. Rept A-89-2. U.S. Dept of the Army, Army Corps of Engineers, Washington, D.C.

    Google Scholar 

  • —&—. 1989b. Allelopathic potential of sixteen aquatic and wetland plants. J. Aquatic P1. Managem.27: 78–84.

    Google Scholar 

  • —&—. 1991. Allelopathic potential ofNuphar lutea (L.) Sibth. & Sm. (Nymphaeaceae). J. Chem. Ecol.17: 701–714.

    Article  Google Scholar 

  • El-Ghazal, R.A.K. &D.N. Reimer. 1986. Germination suppression by extracts of aquatic plants. J. Aquatic Pl. Managem.24: 76–79.

    Google Scholar 

  • Eminson, D. &B. Moss. 1980. The composition and ecology of periphyton communities in freshwaters. 1. The influence of host type and external environment on community composition. Brit. Phycol. J.15: 429–446.

    Article  Google Scholar 

  • Evenari, M. 1949. Germination inhibitors. Bot. Rev.15:153–194.

    Article  Google Scholar 

  • Feeney, P.P. 1976. Plant apparency and chemical defense. Phytochemistry10: 1–40.

    Google Scholar 

  • Feoli, E. &L. Orloci (eds). 1991. Computer assisted vegetation analysis. Handbook of vegetation science 11. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Fitzgerald, G.P. 1969. Some factors in competition or antagonism among bacteria algae and aquatic weeds. J. Phycol.5: 351–359.

    Article  Google Scholar 

  • Forsberg, C., S. Kleiven &T. Willen. 1990. Absence of allelopathic effects ofChara on phyto-plankton in situ. Aquatic Bot.38: 289–294.

    Article  Google Scholar 

  • Frank, P.A. &N. Dechoretz. 1980. Allelopathy in dwarf spikerush (Eleocharis coloradoensis). Weed Sci.28:499–505.

    Google Scholar 

  • Fuerst, E.P. &A.R. Putnam. 1983. Separating the competitive and allelopathic components of interference. J. Chem. Ecol.9:937–944.

    Article  CAS  Google Scholar 

  • Gaudet, C.L. &P.A. Keddy. 1988. A comparative approach to predicting competitive ability from plant traits. Nature334: 242–243.

    Article  Google Scholar 

  • Gaveskaya, N.S. 1969. The role of higher aquatic plants in the nutrition of the animals of freshwater basins. (Ed. by K.H. Mann, translated from Russian by D.G. Maitlland Muller). National Lending Library, Boston Spa. U.K.

    Google Scholar 

  • Gay, P.A. 1960. Ecological studies ofEichhorniacrassipes Solms. in the Sudan. I. Analysis of spread in the Nile. J. Ecol.48:183–191.

    Article  Google Scholar 

  • George, K. 1976. Studies on the chemical control of some important aquatic weeds of Kerala,Salvinia, Ludwigia andCyperus. Pages 255–262,in C.K. Varshney & J. Rzoska (eds.) Aquatic weeds in south east Asia. W. Junk, The Hague.

    Google Scholar 

  • Gessner, F. 1955. Hydrobotanik. Die physiologischen Grundlagen der Pflanzenverbreitung im Wasser. I. Energiehaushalt. VEB Deutscher Verlag der Wissenschaften, Berlin, Germany.

    Google Scholar 

  • —. 1959. Hydrobotanik. Die physiologischen Grundlagen der Pflanzenverbreitung im Wasser. II. Stoffhaushalt. VEB Deutscher Verlag der Wissenschaften, Berlin, Germany.

    Google Scholar 

  • Gibbs, R.D. 1974. Chemotaxonomy of flowering plants. McGill and Queens University Press, Montreal, Canada.

    Google Scholar 

  • Godmaire, H. &C. Nalewajko. 1990. Structure and development of secretory trichomes onMyriophyllum spicatum L. Aquatic Bot.37: 99–122.

    Article  Google Scholar 

  • Gopal, B. 1987. Water Hyacinth. Aquatic Plant Studies 1. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Goulder, R. 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos20:300–309.

    Article  Google Scholar 

  • Grace, J.B. 1983. Autotoxic inhibition of seed germination byTypha latifolia: an evaluation. Oecologia.59: 366–369.

    Article  Google Scholar 

  • —. 1987. The impact of pre-emption on the zonation ofTypha species along lakeshores. Ecol. Monogr.57(4): 283–303.

    Article  Google Scholar 

  • —. 1988. The effect of nutrient additions on mixtures ofTypha latifolia andTypha domingensis Pers. along a water depth gradient. Aquatic Bot.31: 83–92

    Article  Google Scholar 

  • —. 1990. On the relationship between plant traits and competitive ability. Pages 51–65,in J.B. Grace & D. Tilman (eds) Perspectives on plant competition. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • — &D. Tilman (eds). 1990. Perspectives on Plant Competition. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • — &R.G. Wetzel. 1981. Habitat partitioning and competitive displacement in cattails (Typha): Experimental field studies. Amer. Naturalist118:463–474.

    Article  Google Scholar 

  • Graneli, W. 1987. Shoot density regulation in stands of reed,Phragmites australis (Cav.) Trin. ex Steudel. Arch. Hydrobiol. Beih. Ergebn. Limnol.27:211–222.

    Google Scholar 

  • Grime, J.P. 1979. Plant strategies and vegetation processes. John Wiley, Chichester, U.K.

    Google Scholar 

  • Gross, E.M., C.P. Wolk &F. Jüttner. 1991. Fischerellin, a new allelochemical from the freshwater cyanobacteriumFischerella muscicola. J. Phycol.27:686–692.

    Article  CAS  Google Scholar 

  • Guseva, K.A. &S.P. Goncharova. 1965. O vliianii vysshei vodnoi rastitel ‘nosti na razvitie planktonnykh sinezelenykh vodoroslei. Ekologiia i Fiziologiia Sinezelenykh Vodoroslei: 230–234. Leningrad.

  • Hairston, N.G., F.E. Smith &L.G. Slobodkin. 1960. Community structure, population control and competition. Amer. Naturalist94:421–425.

    Article  Google Scholar 

  • Haller, W.T. 1974. Photosynthetic characteristics of the submersed aquatic plantsHydrilla, Southern Naiad andVallisneria. Ph.D. dissertation, University of Florida, Gainesville, FL, USA.

    Google Scholar 

  • — &D.L. Sutton. 1975. Community structure and competition between the aquatic weedHydrilla verticillata andVallisneria neotropicalis. Hyacinth Control J.13:48–50.

    Google Scholar 

  • Harborne, J.B. 1977. Introduction to ecological biochemistry. Academic Press, London.

    Google Scholar 

  • Harper, J.L. 1961. Approaches to the study of plant competition. Pages 1–39,in F.L. Milthorpe (ed.) Mechanisms in biological competition. Society for Experimental Biology, Cambridge University Press, Cambridge.

    Google Scholar 

  • —. 1964. The nature and sequence of interference amongst plants. Proc. XI Int. Congr. Genet.2:465–482.

    Google Scholar 

  • —. 1977. Population Biology of Plants. Academic Press, New York.

    Google Scholar 

  • Harrison, P.G. &C. Durance. 1985. Reductions in photosynthetic carbon uptake in epiphytic diatoms by water soluble extracts of leaves ofZostera marina. Mar. Biol.90: 117–119.

    Article  CAS  Google Scholar 

  • Hartog, C. den &S. Segal. 1964. A new classification of the water plant communities. Acta Bot. Néerl.13: 367–393.

    Google Scholar 

  • — &G. van der Velde. 1988. Structural aspects of aquatic plant communities. Pages 113–154, inJ.J. Symoens(ed.) Vegetation of inland waters. Handbook of vegetation science 15/1. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Hasler, A.D. &E. Jones. 1949. Demonstration of antagonistic action of large aquatic plants on algae and rotifers. Ecology30: 359–364.

    Article  Google Scholar 

  • Hejny, S. 1960. Ökologische Charakteristik der Wasser- und Sumpfpflanzen in den slowakischen Tiefebenen. Slovak. Akad. Wiss., Bratislava.

  • —. 1971. The dynamic characteristics of littoral vegetation with respect to changes of water level. Hidrobiologia12: 71–85.

    Google Scholar 

  • Hogeweg, P. &A.L. Brenkert-van Riet. 1969. Structure of aquatic vegetation: a comparison of aquatic vegetation in India, the Netherlands and Czechoslovakia. Trop. Ecol.10:139–162.

    Google Scholar 

  • Holm, L. 1969. Chemical interaction between plants on agricultural lands. Down to Earth25:16–22.

    CAS  Google Scholar 

  • Hootsmans, M. J.M. &J.E. Vermaat 1985. The effects of periphyton grazing by three epifaunal species on the growth ofZostera marina. L. under experimental conditons. Aquatic Bot.22: 83–88.

    Article  Google Scholar 

  • Horecka, M. 1991. The significant role ofChara hispida grown in water regime of a gravel pit lake at Senec. Arch. Protistenkd.139:275–278.

    Google Scholar 

  • Howard, R.K. 1982. Impact of activities of epibenthic amphipods on surface-fouling of eelgrass leaves. Aquatic Bot.14:91–97.

    Article  Google Scholar 

  • — &F.T. Short. 1986. Seagrass growth and survivorship under the influence of epiphyte grazers. Aquatic Bot.24:287–302.

    Article  Google Scholar 

  • Howard-Williams, C. 1978. Growth and production of aquatic macrophytes in a South African temperate saline lake. Verh. Int. Verein. Limnol.20: 1153–1158.

    Google Scholar 

  • —. 1981. Studies on the ability of aPotamogeton pectinatus community to remove dissolved nitrogen and phosphorus compounds from lake water. J. Appl. Ecol.18:619–637.

    Article  CAS  Google Scholar 

  • — &B.R. Allanson. 1981. Phosphorus cycling in aPotamogetonpectinatus L. Bed. Oecologia.49: 56–66.

    Article  Google Scholar 

  • Hutchinson, G.E. 1970. The chemical ecology of three species ofMyriophyllum (Angiospermae, Haloragaceae). Limn. & Oceanogr.15:1–5.

    CAS  Google Scholar 

  • —. 1975. A treatise on limnology. Vol. III. Limnological botany. J. Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Iakawa, M., V.M. Thomas, L.J. Buckley &J.J. Uebel. 1973. J. Phycol.9: 302–305. (cited from Wium-Andersonetal., 1983).

    Google Scholar 

  • Ikusima, I. 1955. Growth of duckweed populations as related to frond density. Physiol. Ecol. Japan6: 69–81. (in Japanese).

    Google Scholar 

  • —,K. Shinozaki &T. Kira. 1955. Intraspecific competition among higher plants. III. Growth of duckweed, with a theoretical consideration of the C-D effect. J. Inst. Polytechn. Osaka City Univ. Ser. Biol.D6:107–119.

    Google Scholar 

  • Iswaran, V. &A. Sen. 1973. Influence of extract of water hyacinth (Eichhomia crassipes) on the yield of brinjal (Solanummelongena) var. Pusa Kranti. Sci. & Cult.39: 394–395.

    Google Scholar 

  • Izac, R., D. Stierle &J. Sims. 1982. Phytochemistry21:229. (cited from Wium-Anderson et al., 1983).

    Article  CAS  Google Scholar 

  • Jacobsen, N. &L.E.K. Pedersen. 1983. Synthesis and insecticidal properties of Propane-1,3-dithiol (Analogues of the insecticidal derivatives of Dithiolane & Trithiane from the algaChara globularis Thuillier). Pestic. Sci.14: 90–97.

    Article  CAS  Google Scholar 

  • Jain, R., Megh Singh &DJ. Dezman. 1989. Qualitative and quantitative characterization of phenolic compounds from Lantana (Lantana camara) leaves. Weed Sci.17:302–307.

    Google Scholar 

  • Jangaard, N.O., M.M. Sckeri, &R.H. Schieferstein. 1971. The role of phenolics and abscisic acid in nutsedge tuber dormancy. Weed Sci.19: 17–20.

    CAS  Google Scholar 

  • Jasnowski, M. 1975. Torfowiskai tereny bagienne WPolsce. Pages 356–390.in N.J. Kac (ed.) Bagna kuli zlemskiej. PWN, Warszawa, Poland.

    Google Scholar 

  • Johansson, M.E. &P.A. Keddy. 1991. Intensity and asymmetry of competition between pairs of different degrees of similarity: an experimental study on two guilds of wetland plants. Oikos60: 27–34.

    Article  Google Scholar 

  • Johnston, D.L., D.L. Sutton, V. V. Vandiver Jr, &K.A. Langeland. 1983. Replacement ofHydrilla verticillata by other aquatic plants in a pond with emphasis on growth of American lotus (Nelumbo luted). J. Aquatic Pl. Managern.21:41–43.

    Google Scholar 

  • Jones, R.C., K. Walti &M.S. Adams. 1983. Phytoplankton as a factor in decline of the submersed macrophyteMyriophyllum spicatum L. in Lake Wingra Wisconsin. Hydrobiologia107: 213–219.

    Article  Google Scholar 

  • Junk, W.J. 1977. The invertebrate fauna of the floating vegetation of Bung Borapet, a reservoir in central Thailand. Hydrobiologia53:229–238.

    Article  Google Scholar 

  • Jupp, B.P. &D.H.N. Spence. 1977. Limitations on macrophytes in a eutrophic lake Loch leven 1. Effects of phytoplankton. J. Ecol.65:175–186.

    Article  Google Scholar 

  • Jurd, L., T.A. Geissman &M.K. Seikel. 1957. Arch. Biochem. Biophys.67: 284. (cited from McClure, 1970).

    Article  PubMed  CAS  Google Scholar 

  • Jüttner, F. 1981. Biologically active compounds released during algal blooms. Verh. Int. Verein. Limnol.21:227–230.

    Google Scholar 

  • Kaul, V. & U. Bakaya. 1976. The noxious floating lemnid-Salvinia aquatic weed complex in Kashmir. Pages 188–192, in C.K. Varshney & J. Rzoska (eds) Aquatic weeds in south east Asia. W. Junk, The Hague.

  • Kautsky, L. 1991. In situ experiments on interrelationships between six brackish macrophyte species. Aquatic Bot.39:159–172.

    Article  Google Scholar 

  • Keating, K.J. 1977. Allelopathic influence on blue green bloom sequence in a eutrophic lake. Science196: 885–887.

    Article  PubMed  Google Scholar 

  • Keddy, P.A. 1976. Lakes as islands: the distributional ecology of two aquatic plants, Lemna minor L. andL. trisulca L. Ecology57: 353–359.

    Article  Google Scholar 

  • —. 1989. Competition. Chapman & Hall, London.

    Google Scholar 

  • —. 1990. Competitive hierarchies and centrifugal organization in plant communities. Pages 265–290,in J.B. Grace & D. Tilman (eds.) Perspectives on plant competition. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Keeley, J.E. 1981.Isoetes howellii: a submerged aquatic CAM plant? Amer. J. Bot.68:420–424.

    Article  CAS  Google Scholar 

  • Kirpenko, N.I. 1986. Phytopathic properties of the toxin of bluegreen algae. Gidrobiol. Zhurn.22(1): 48–50.

    CAS  Google Scholar 

  • Kleiven, S.W. &W. Szczepanska. 1988. The effects of extracts ofChara tomentosa and two other aquatic macrophytes on seed germination. Aquatic Bot.32:193–198.

    Article  Google Scholar 

  • Kogan, S.I. &G.A. Chinnova. 1972. Relations betweenCeratophyllum demersum (L.) and some blue-green algae. Hydrobiol. J. (USSR, Translation Ser.)8:14–25.

    Google Scholar 

  • Kohli, R.K., K. Kaur, P. Chaudhry, A. Kumari &D.B. Saxena. 1987. Negative aspects of Eucalyptus farming. Pages 225–233,in P.K. Khosla & D.K. Khurana (eds.) Agroforestry for rural needs. Indian Society of Tree Scientists, Solan, India.

    Google Scholar 

  • Krishnamoorthi, K.P., S. Shende &M.K. Abdulappa. 1968. On a collection of some molluscs (bivalves and gastropods) from some water bodies of Nagpur with ecological notes. Environm. Health10:43–50.

    Google Scholar 

  • Kulshreshtha, M. 1981. Allelochemic influence of some aquatic macrophytes. Acta Limnol. Indica1: 35–37.

    Google Scholar 

  • — &B. Gopal. 1983. Allelopathic influence ofHydrilla verticillata (L.F.) Royle on the distribution ofCeratophyllum species. Aquatic Bot.16:207–209.

    Article  Google Scholar 

  • Kushari, D.P. 1987. Effect of leaf leachates of neem and shirish on the biomass productionofAzolla pinnata. Int. Rice Res. Newslett.12: 34.

    Google Scholar 

  • LaLonde, R.T., C.D. Morris, C.F. Wong, L.C. Gardner, D.J. Eckert, D.R. King &R.H. Zimmerman. 1979. Response ofAedes triseriatus larvae to fatty acids ofCladophora. J. Chem. Ecol.5: 371–381.

    Article  CAS  Google Scholar 

  • Landolt, E. 1957. Physiologische und ökologische Untersuchungen an Lemnaceen. Ber. Schweiz. Bot. Gesell.67: 271–410.

    Google Scholar 

  • - 1986. Biosystematic investigations in the family of duckweeds (Lemnaceae). Vol. 2. The family of Lemnaceae- a monographic study. Vol. 1. Veröffent. Geobot. Inst. Eidg. Hochschule, Stift. Rübel, Zurich 71.

  • - 1987. Biosystematic investigations in the family of duckweeds (Lemnaceae). Vol. 4. The family of Lemnaceae- a monographic study. Vol. 2. Veröffent. Geobot. Inst. Eidg. Hochschule, Stift. Rübel, Zurich 95.

  • Law, R. &A.R. Watkinson. 1989. Competition. Pages 243–284,in J.M. Cherrett (ed.) Ecological concepts: the contribution of ecology to an understanding of the natural world. Blackwells, Oxford, U.K..

    Google Scholar 

  • Leather, G.R. &F.A. Einhellig. 1985. Mechanisms of allelopathic action in bioassay. Pages 197–205, in A.C. Thompson (ed.) The chemistry of allelopathy. ACS Symposium series 268. American Chemical Society, Washington, D.C. USA.

    Google Scholar 

  • —&—. 1986. Bioassay in the study of allelopathy. Pages 133–145, in A.R. Putnam and C.S. Tang (eds.) The science of allelopathy. John Wiley, New York.

    Google Scholar 

  • —&—. 1988. The bioassay of naturally occurring allelochemicals for phytotoxicity. J. Chem. Ecol.14:1821–1828.

    Article  CAS  Google Scholar 

  • Lee, H.K. &J.O. Guh. 1982. Study on competition ability and chemical control ofSagittaria pygmaea Miquel- a perennial weed in paddy field. Nongsa Sihom Yongu Pogo24: 16–23.

    CAS  Google Scholar 

  • Lincoln, D.E. &D. Couvet. 1989. The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint. Oecologia78:112–114.

    Article  Google Scholar 

  • Little, E.C.S. 1966. The invasion of man-made lakes by plants. Pages 75–86,in R.H. Lowe-McConnell (ed.) Man-made lakes. Academic Press, London.

    Google Scholar 

  • Lodge, D.M. 1985. Macrophyte-gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshwater Biol.15: 695–708.

    Article  Google Scholar 

  • —. 1986. Selective grazing on periphyton: A determinant of freshwater gastropod microdistribution. Freshwater. Biol.16: 831–841.

    Article  Google Scholar 

  • Loucks, O.L. 1990. Land water interactions. Pages 243–258,in B.C. Patten, S.E. Jorgensen, H.J. Dumont, B. Gopal, P.P. Koryavov, J. Kvet, H. Löffler, Y.M. Sverizhev & J.G. Tundisi (eds.) Wetlands and shallow continental water bodies. Vol. 1. Natural and human relationships. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Lovett-Doust, L. 1981. Population dynamics and local specialization in a clonal perennial (Ranunculus). I. The dynamics of ramets in contrasting habitats. J. Ecol.69:743–755.

    Article  Google Scholar 

  • — &J. Lovett-Doust. 1982. The battle strategies of plants. New Scientist95: 81–84.

    Google Scholar 

  • Maberly, S.C. 1983. The interdependence of photon irradiance and free carbon dioxide on bicarbonate concentration on the photsynthetic compensation points of freshwater plants. New Phytol.93: 1–12.

    Article  Google Scholar 

  • Madsen, J.D., J.W. Sutherland, J.A. Bloomfield, L.W. Eichler &C.W. Boylen. 1991. The decline of native vegetation under dense Eurasian watermilfoil canopies. J. Aquatic Pl. Managern.29: 94–99.

    Google Scholar 

  • Maestrini, S.Y. &DJ. Bonin. 1981. Allelopathic relationships between phytoplankton species: Algal ecology toxicity. Canad. Bull. Fish. Aquatic Sci.209: 323–338. Fisheries and Oceans, Govt of Canada, Ottawa.

    Google Scholar 

  • Malthus, T.R. 1798. An essay on the principle of population. Penguin Books, Harmondsworth. (Reprinted ed. 1982).

  • Martin, D.F. 1983. Structural studies of a naturally occurring hydrilla inhibitor. Miscellaneous Paper A-83-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

  • Martin, B.B. &D.F. Martin. 1988. Influence of substituted phenols on the growthof Hydrilla. J. Aquatic Pl. Managern.26: 74–75.

    Google Scholar 

  • May, F.E. &J.E. Ash. 1990. An assessment of the allelopathic potential ofEucalyptus. Austral. J. Bot. 38: 245–254.

    Article  Google Scholar 

  • McClure, J.W. 1970. Secondary constituents of aquatic angiosperms. Pages 233–265,in J.B. Harborne (ed.) Phytochemical Phylogeny. Academic Press. New York.

    Google Scholar 

  • — &R.E. Alston. 1964. Nature 201: 311. (cited from McClure 1970).

    Article  PubMed  CAS  Google Scholar 

  • McCracken, M.D., R.E. Middaugh &R.S. Middaugh. 1980. A chemical characterization of an algal inhibitor obtained fromChlamydomonas. Hydrobiologia70:271–276.

    Article  CAS  Google Scholar 

  • McCreary, N.J. 1985. Competition and coexistence in two vegetative perennials:Eleocharis acicularis (L.) R. & S. andJuncuspelocarpus formasubmersus Fassett. Ph.D. thesis, University of Notre Dame, IN.

    Google Scholar 

  • —. 1991. Competition as a mechanism of submersed macrophyte community structure. Aquatic Bot.41: 177–193.

    Article  Google Scholar 

  • -& S.R. Carpenter. 1983. Competition among submersed perennial plants: use of reciprocal replacement series in situ. Proceedings of the international symposium on aquatic macrophytes Nijmegen: 134–138.

  • —&—. 1987. Density dependent growth interactions betweenEleocharis acicularis (L.) R. & S. andJuncuspelocarpus formasubmersus Fassett. Aquatic Bot.27:229–241.

    Article  Google Scholar 

  • —,—J.E. Chaney. 1983. Coexistence and interference in two submersed freshwater perennial plants. Oecologia59:393–396.

    Article  Google Scholar 

  • McIlraith, A.L., G.G.C. Robinson &J.M. Shay. 1989. A field study of competition and interaction betweenLemna minor andLemna trisulca. Canad. J. Bot.67:2904–2911.

    Article  Google Scholar 

  • McLay, C.L. 1974. The distribution of duckweedLemna perpusilla in a small southern California lake: An experimental approach. Ecology55: 262–276.

    Article  Google Scholar 

  • McMillan, C., O. Zapata &L. Escobar. 1980. Sulphated phenolic compounds in seagrasses. Aquatic Bot.8: 267–278.

    Article  CAS  Google Scholar 

  • McNaughton, S.J. 1968. Autotoxic feedback in relation to germination and seedling growth inTypha latifolia. Ecology49:367–369.

    Article  Google Scholar 

  • Mehta, I. &R.K. Sharma. 1975. Control ofTypha by a competitive plant. Ann. Arid Zone14: 175–182.

    Google Scholar 

  • Meteiko, T. Ya. 1981. Metabolites of higher aquatic plants and their role in hydrobiocoenoses: a review. (in Russian). Gidrobiologi Zhurnal27(4): 3–14.

    Google Scholar 

  • Misra, A., G.K. Patro &G.C. Tosh. 1976. Studies on chemical control ofChara. Pages 265–268, in C.K. Varshney & J. Rzoska (eds.) Aquatic weeds in south east Asia. W. Junk, The Hague.

    Google Scholar 

  • Misra, R. D. 1938. Edaphic factors in the distribution of aquatic plants in the English lakes. J. Ecol.38:411–451.

    Google Scholar 

  • Moeller, R.E. 1978. Seasonal changes in biomass, tissue chemistry and net production of the evergreen hydrophyteLobelia donmanna. Canad. J. Bot.56:1425–1433.

    CAS  Google Scholar 

  • Moen, R.A. &Y. Cohen. 1989. Growth and competition betweenPotamogeton pectinatus L. andMyriophyllumexalbescens Fern. in experimental ecosystems. Aquatic Bot.33:257–270.

    Article  Google Scholar 

  • Moens, R. 1981. Les habitats deLymnaea truncatula hote intermediaire deFasciola hepatica. Rev. Agric.34:1563–1580.

    Google Scholar 

  • Mook, J.H. &J.van der Toorn. 1982. The influence of environmental factors and management on stands ofPhragmitesaustralis. II. Effects on yield and its relationship with shoot density. J. Appl. Ecol.19:501–517.

    Article  Google Scholar 

  • Morton, B.A. &J.E. Keeley. 1990. C4 acid fixation in photosynthesis of the submerged aquaticEleocharis acicularis (L.) R. & S. Aquatic Bot.36: 379–388.

    Article  CAS  Google Scholar 

  • Moss, B. 1989. Water pollution and the management of ecosystems: A case study of science and scientist. Pages 401–422,in P.J. Grubb & J.B. Whittaker (eds.) Toward a more exact ecology. Blackwells, Oxford, U.K.

    Google Scholar 

  • Moyle, J.B. 1945. Some chemical factors influencing the distribution of aquatic plants in Minnesota. Amer. Midl. Naturalist34: 402–420.

    Article  CAS  Google Scholar 

  • Muller, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club93: 332–351.

    Article  CAS  Google Scholar 

  • — 1969. Allelopathy as a factor in ecological process. Vegetatio18:348–357.

    Article  Google Scholar 

  • Munakata, K., S. Marumo, K. Ota & Y.L. Chen. 1965. Tetrahedron Lett. 4167. (cited from McClure 1970).

  • Myers, R.L. 1984. Ecological compression ofTaxodium distichum var.nutans byMelaleuca quinquenerviain southern Florida. Pages 358–364,in K.C. Ewel and H.T. Odum (eds) Cypress swamps. University of Florida Press, Gainesville, FL, USA.

    Google Scholar 

  • Nat. Acad. Sci. 1976. Making aquatic weeds useful. Some perspectives for developing countries. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Ndifon, G.T. 1979. Studies on the feeding biology, anatomical variations and ecology of the vectors of Schistosomiasis and other freshwater snails in South Western Nigeria. Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria.

    Google Scholar 

  • — &F.M.A. Ukoli. 1989. Ecology of freshwater snails in South Western Nigeria. 1. Distribution and habitat preferences. Hydrobiologia171:231–253.

    Article  Google Scholar 

  • Niklas, K.J. &V. Kerchner. 1984. Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology10: 79–101.

    Google Scholar 

  • Numata, M. 1982. Weed-ecological approaches to allelopathy. Pages 169–173,in W. Holzner & M. Numata (eds.). Biology and ecology of weeds. Dr. W. Junk Publ., The Hague.

    Google Scholar 

  • Nyberg, P.F. 1986. Effects of allelopathic chemicals on photosynthetic rate ofLemna minor. MA Thesis, University of S. Dakota, Vermillion, SD, USA.

    Google Scholar 

  • Oborn, E.T., W.T. Moran, K.T. Greene & T.R. Bartley. 1954. Weed control investigations on some important plants which impede flow of western irrigation waters. Joint Lab Report SI-2: 16–17. USDA Bureau of Reclamation Engineering Lab. & USDA ARS Field Crops Branch.

  • O’Hara, J. 1967. Invertebrates found in the water hyacinth mats. Quart. J. Florida Acad. Sci.30: 73–80.

    Google Scholar 

  • Okland, R.H. 1990. Vegetation ecology: Theory, methods and applications with reference to Fennoscandia. Sommerfeltia, Suppl.1:1–231.

    Google Scholar 

  • O’Neill Morin, J. &K.D. Kimball. 1983. Relationship of macrophyte mediated changes in the water column to periphyton composition and abundance. Freshwater Biol.13:403–414.

    Article  Google Scholar 

  • Orth, R.J. &J. van Montfrans. 1984. Epiphyte-seagrass relationships with an emphasis on the role of micrograzing. Aquatic Bot.18:43–69.

    Article  Google Scholar 

  • Ostrofsky, M.L. &E.R. Zettler. 1986. Chemical defences in aquatic plants. J. Ecol.74:279–284.

    Article  CAS  Google Scholar 

  • Ozimek, T., E. Pieczynska &A. Hankiewicz. 1991. Effects of filamentous algae on submerged macrophyte growth: a laboratory experiment. Aquatic Bot.41: 309–315.

    Article  Google Scholar 

  • Parija, P. 1934. Physiological investigations on waterhyacinth,Eichhornia crassipes in Orissa with notes on some other aquatic weeds. Indian J. Agric. Sci.4: 399–429.

    CAS  Google Scholar 

  • Patience, R.L., P.R. Sterry &J.D. Thomas. 1983. Changes in chemical composition of a decomposing aquatic macrophyte,Lemnapaucicostata. J. Chem. Ecol.9: 889–911.

    Article  CAS  Google Scholar 

  • Patrick, Z., T. Toussoun &L. Koch. 1964. Effect of crop residue decomposition products on plant roots. Ann. Rev. Phytopath.2: 267–292.

    Article  CAS  Google Scholar 

  • Pawlowski, B. &K. Zarzycki. 1972. Zespoly wodne i begienne. Pages 317–326,in W. Szafer & K. Zarzyki (eds.) Szata roslinna polski. 1. PWN, Warszawa, Poland.

    Google Scholar 

  • Pennak, R.W. 1966. Structure of Zooplankton populations in the littoral macrophyte zone of some Colorado lakes. Trans. Amer. Microscop. Soc.85:329–349.

    Article  Google Scholar 

  • —. 1973. Some evidence for aquatic macrophytes as repellent for a limnetic species ofDaphnia. Int. Rev. Gesamten Hydrobiol.58:569–576.

    Article  Google Scholar 

  • Philipose, M.T., V. Ramachandran, S.B. Singh &T. Ramaprabhu. 1970. Some observations on the weeds of cultivable freshwaters in Orissa. J. Inland Fish. Soc. IndiaII: 61–64.

    Google Scholar 

  • Phillips, G.L., D. Eminson &B. Moss. 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Bot.4: 103–126.

    Article  Google Scholar 

  • Pianka, E.R. 1981. Competition and niche theory. Pages 167–196,in R.M. May (ed.) Theoretical ecology. W.B. Saunders, Philadelphia.

    Google Scholar 

  • Pieczynska, E. 1972. Ecology of the eulittoral zones of lakes. Ekol. Pol.20:637–732.

    Google Scholar 

  • Pimentel, D. &P.C. White. 1959. Biological environments and habits ofAustralorbis glabratus. Ecology40:541–550.

    Article  Google Scholar 

  • Pieterse, A.H. &K.J. Murphy (eds) 1990. Aquatic weeds: The ecology and management of nuisance aquatic vegetation. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Pip, E. 1984. Ecogeographical tolerance range variation in aquatic macrophytes. Hydrobiologia108: 37–48.

    Google Scholar 

  • —. 1987. The ecology ofPotamogeton species in central North America. Hydrobiologia153: 203–216.

    Google Scholar 

  • Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Advan. Agron.24: 29–96.

    CAS  Google Scholar 

  • Porwal, M.K. &S.L. Mundra. 1992. Allelopathic effects of aqueous extracts ofCyperus rotundus andEchinochloacolonum on germination and growth of blackgram and paddy. Pages 87–88, in P. Tauro & S.S. Narwal (eds.) Proc. first nat. symp. allelopathy in agroecosystems. Indian Society of Allelopathy, Haryana Agric. University, Hissar, India.

    Google Scholar 

  • Pridham, J.B. 1964. Phytochemistry3: 493. (cited from McClure, 1970).

    Article  CAS  Google Scholar 

  • Proctor, V.W. 1957. Some controlling factors in the distribution ofHaematococcus pluvialis. Ecology38:457–462.

    Article  Google Scholar 

  • Putnam, A.R. 1983. Allelopathic chemicals. Nature’s herbicides in action. Chem. Eng. News4: 34–45.

    Google Scholar 

  • — 1988. Allelochemicals from plants as herbicides. Weed Technol.2: 510–518.

    CAS  Google Scholar 

  • — &C.S. Tang (eds). 1986. The Science of Allelopathy. John Wiley, New York.

    Google Scholar 

  • Quackenbush, R.C., D. Bunn, &W. Lingren. 1986. HPLC determination of phenolic acids in the water soluble extract ofZostera marina (L.) (Eelgrass). Aquatic Bot.24: 83–84.

    Article  CAS  Google Scholar 

  • Rai, D.N. &J. DattaMunshi. 1981. Ecological characteristics of chaurs of North Bihar. Int. J. Ecol. Environ. Sci.7: 89–98.

    CAS  Google Scholar 

  • —,P.K. Verma &J. DattaMunshi. 1980. Interactions between a floating (Trapa bispinosa) and submerged vegetation community in a fishpond of Bhagalpur, India. Pol. Arch. Hydrobiol.27:137–142.

    Google Scholar 

  • Ramaprabhu, T. 1972. Observations on the autecology ofCeratophyllumdemersum L. with notes on its control. J. Asiat. Soc.14: 149–162.

    Google Scholar 

  • Ramirez-Toro, G.I., G.R. Leather &F.A. Einhellig. 1988. Effects of three phenolic compounds onLemna gibba G3. J. Chem. Ecol.14: 845–853.

    Article  Google Scholar 

  • Reavell, P.E. 1980. A study of the diets of some British freshwater gastropods. J. Concholl.30:253–271.

    Google Scholar 

  • Reddy, K.R. 1988. Water hyacinth (Eichhorniacrassipes (Mart.) Solms.) biomass cropping system. I. Production. Pages 103–140, in W.H. Smith & J.R. Frank (eds.) Methane from biomass: A systems approach. Elsevier, London.

    Google Scholar 

  • — &W.F. Debusk. 1984. Growth characteristics of aquatic macrophytes cultured in nutrient enriched water: I. Water hyacinth, water lettuce and pennywort. Econ. Bot.38(2): 229–239.

    Google Scholar 

  • —&—. 1985. Growth characteristics of aquatic macrophytes cultured in nutrient enriched water: II.Azolla, duckweed andSalvinia. Econ. Bot.39(2): 200–205.

    Google Scholar 

  • —,D.L. Sutton &G.E. Bowes. 1983. Biomass production of freshwater aquatic plants in Florida. Proc. Soil. Crop Sci. Soc. Fl.42: 28–40.

    Google Scholar 

  • Rejmankova, E. 1975. Comparison ofLemnagibba andLemna minorfrom the production ecological viewpoint. Aquatic Bot.1: 423–428.

    Article  Google Scholar 

  • Reznik, H. &R. Neuhausel. 1959. Z. Bot.47: 41. (cited from McClure 1970).

    Google Scholar 

  • Rhoades, D.F. &R.G. Cates. 1976. Toward a general theory of plant anti-herbivore chemistry. Recent Advances Phytochem.10: 168–213.

    CAS  Google Scholar 

  • Rice, E.L. 1967. Chemical warfare between plants. Bios38:67–74.

    CAS  Google Scholar 

  • —. 1974. Allelopathy. First Edition. Academic Press, N.Y.

    Google Scholar 

  • —. 1979. Allelopathy: an update. Bot. Rev.45:15–109.

    CAS  Google Scholar 

  • —. 1984. Allelopathy. 2nd Edition. Academic Press, N.Y.

    Google Scholar 

  • Rogers, K.H. &C.M. Breen. 1983. An investigation of macrophyte, epiphyte and grazer interactions. Pages 217–226, in R.G. Wetzel (ed.) Periphyton of freshwater ecosystems. Develop. Hydrobiol. 17. W. Junk, The Hague.

    Google Scholar 

  • Sanchez Tames, R., M.D.V. Gesto &E. Vieitez. 1973. Growth substances isolated from tubers ofCyperus esculentus var.aureus. Physiol. Pl.28:195–200.

    Article  Google Scholar 

  • Sankaran, T. &V.P. Rao. 1972. An annotated list of insects attacking some terrestrial and aquatic weeds in India with records of some parasites of the phytophagous insects. Techn. Bull. Commonw. Inst. Biol. Control15:131–157.

    Google Scholar 

  • Saxena, Manjula K. 1991. Effect of terrestrial litter inputs on the growth of aquatic plants. International conference on land-water interactions, Abstracts: 147. National Institute of Ecology, New Delhi.

    Google Scholar 

  • —. 1992. Allelopathic potential of terrestrial plants against the growth of aquatic weeds. Pages 147–148, in P. Tauro & S.S. Narwal (eds) Proc. first nat. symp. allelopathy in agroecosystems. Indian Society of Allelopathy, Haryana Agric. University, Hissar, India.

    Google Scholar 

  • Schloesser, D.W., T.A. Edsall &B.A. Manny. 1985. Growth of submersed macrophyte communities in the St. Clair-Detroit river system between Lake Huron and Lake Erie. Canad. J. Bot.63: 1061–1065.

    Google Scholar 

  • Schreiter, T. 1928. Untersuchungen über den Einfluss einer Helodeawucherung auf die Netzplankton des Hirschberger Grossteiches in Bohmen in den Jahren 1921 bis 1925 incl. Sb. vyzk. Ust. zemed. RCS61.

  • Scholes, K. 1987. Effects of six classes of allelochemicals on growth, photosynthesis, and chlorophyll content inLemna minor. MA thesis, University of S. Dakota, Vermillion, SD, USA.

    Google Scholar 

  • Schröder, R. 1987. Das Schilfsterben am Bodensee-Untersee: Beobachtungen, Untersuchungen und Gegenmassnahmen. Arch. Hydrobiol. Suppl.76: 53–99.

    Google Scholar 

  • Sculthorpe, C.D. 1967. The biology of aquatic vascular plants. Edward Arnold, London.

    Google Scholar 

  • Segal, S. 1968. On structure, zonation and succession in vegetation of higher aquatics. Manuscript to Expert Meeting on Ecology and Control of Aquatic Vegetation. UNESCO, Paris.

    Google Scholar 

  • Seidel, K. 1965. Phenol-Abbau in Wasser durchScripus lacustris L. wahrend einer versuchsdauer von 31 Monaten. Naturwissenschaften52(13): 398–399.

    Article  CAS  Google Scholar 

  • —. 1969. Zur bakteriziden Wirkung höherer Pflanzen. Naturwissenschaften56(12): 642–643.

    Article  PubMed  CAS  Google Scholar 

  • —. 1971 a. Wirkung höherer Pflanzen auf pathogene Keime in Gewässern. Naturwissenschaften58(4): 150–151.

    Article  PubMed  CAS  Google Scholar 

  • —. 1971b. Macrophytes as functional elements in the environment of man. Hidrobiologia, Bucuresti12: 121–130.

    Google Scholar 

  • —. 1972. Exudat-Effekt der Rhizothamnien vonAlnus glutinosa Gaertner. Naturwissenschaften59(8): 366–367.

    Article  Google Scholar 

  • —. 1973. Zur Biologie und Gewässer-Reinigungsvermögen vonIris pseudoacorus L. Naturwissenschaften60(3): 158.

    CAS  Google Scholar 

  • —. 1974.Schoenoplectus lacustris (L.) Palla zur Reinigung von Gewässern. Naturwissenschaften61(2): 81.

    PubMed  Google Scholar 

  • — &R. Kickuth. 1970. Wasser und Boden 1970: 38–40. (cited from Seidel, 1971b).

    Google Scholar 

  • Sharma, K.P. 1985. Allelopathic influence of algae on the growth ofEichhornia crassipes (Mart.) Solms. Aquatic Bot.22: 71–78.

    Article  Google Scholar 

  • — &B. Gopal. 1978. Seed germination and occurrence of seedlings ofTypha species in nature. Aquatic Bot.4:353–358.

    Article  Google Scholar 

  • —&—. 1979a. Effect of light intensity on growth and establishment of seedlings ofTypha angustata. Pol. Arch. Hydrobiol.26:495–500.

    Google Scholar 

  • —&—. 1979b. Effect of water regimes on the growth and establishment ofTypha angustata seedlings. Int. J. Ecol. Environm. Sci.5: 69–74.

    Google Scholar 

  • —&—. 1980. A note on the identity ofTyphaelephantina Roxb. Aquatic Bot.9:381–387.

    Article  Google Scholar 

  • —,S.P.S. Khushwaha &B. Gopal. 1990. Autotoxic effect onPhragmites karka (Retz) Trin. ex Steud. plant on its seed germination. Geobios17: 287–288.

    Google Scholar 

  • — &V.N. Pradhan. 1983. Study on growth and biomass of underground organs ofTypha angustata Bory et Chaub. Hydrobiologia98: 147–151.

    Article  Google Scholar 

  • Sheldon, S.P. 1987. The effects of herbivorous snails on submerged macrophyte communities in Minnesota lakes. Ecology68:1920–1931.

    Article  Google Scholar 

  • Silverstein, R.M. & J.B. Simeone (eds.). 1983. Special issue: American Chemical Society Symposium on Allelopathy. J. Chem. Ecol.9:1–935.

  • Simberloff, D. 1983. Competition theory, hypothesis testing and other community ecological buzzwords. Amer. Naturalist122: 626–635.

    Article  Google Scholar 

  • Simpson, P.S. &J.W. Eaton. 1986. Comparative studies of the photosynthesis of the submerged macrophyteElodea canadensis and the filamentous algaeCladophora glomerata andSpirogyra sp. Aquatic Bot.24: 1–12.

    Article  Google Scholar 

  • Singh, D. &R.K. Kohli. 1992. Reasons of poor under floor vegetation ofEucalyptus. Pages 114–117, in P. Tauro & S.S. Narwal (eds.) Proc. first nat. symp. allelopathy in agroecosystems. Indian Society of Allelopathy, Haryana Agric. University, Hissar, India.

    Google Scholar 

  • Singh, Mohan. 1992. Studies on growth, competition and allelopathic interactions among aquatic macrophytes. Ph.D. thesis, University of Rajasthan, Jaipur, India.

    Google Scholar 

  • Singh, S.P. 1968. Presence of growth inhibitor in the tubers of nutgrass (Cyperus rotundus L.). Proc. Indian Acad. Sci.67:18–23.

    Google Scholar 

  • Singhvi, N.R. &K.D. Sharma. 1984. Allelopathic effects ofLudwigia adscendens Linn, andIpomoea aquatica Forsk. on seedling growth of pearlmillet (Pennisetum typhoideum Rich.). Trans. Isdt. and Ucds.9(2): 95–100.

    CAS  Google Scholar 

  • Sinhababu, A. &D.P. Kushari. 1984. Effect of leaf leachates ofPolyalthialongifolia on the growth and nitrogen fixation ofAzolla pinnata. Hydrobiol. Bull.18(2): 103–108.

    Article  Google Scholar 

  • Sircar, P.K. S. Banerjee &S.M. Sircar. 1973. Gibberellin like activity in the shoot extract of water hyacinth (Eichhorniacrassipes). Indian J. Agric. Sci.43: 1–8.

    CAS  Google Scholar 

  • Sircar, S.M. &R. Chakraverty. 1961. The effect of growth regulating substances of the root extract of water hyacinth (Eichhornia speciosa Kunth.) on jute (Corchorus capsularis Linn.). Curr. Sci.11:428–430.

    Google Scholar 

  • -&-Sircar, S.M. & R. Chakraverty. The effect of gibberellic acid and growth regulating substances of the root extract of water hyacinth (Eichhornia crassipes) on rice and gram. Indian J. Pl. Physiol.5: 257–263.

  • — &M. Kundu. 1959. Effect of root extract of water hyacinth (Eichhornia speciosa Kunth) on the growth and flowering of rice. Sci. & Cult.24: 332–333.

    Google Scholar 

  • —&—. 1960. Growth regulating properties of root extract ofEichhornia speciosa Kunth. Physiol. Pl.13: 56–63.

    Article  CAS  Google Scholar 

  • Smart, R.M. &J.W. Barko. 1989. Competitive interactions of submersed aquatic macrophytes in relation to water chemistry and other environmental conditions. Pages 159–164, in Proceedings of the 23rd Annual meeting on the aquatic plant control research program. MP-A-89-1. USAE-WES, Vicksburg, MS.

    Google Scholar 

  • Smith, C.S. 1978. Phosphorus uptake by roots and shoots ofMyriophyllumspicatum L. Ph.D. thesis, Univ. of Wisconsin, Madison.

    Google Scholar 

  • Smock, L.A. &D.L. Stoneburner. 1980. The response of macroinvertebrates to aquatic macrophyte decomposition. Oikos33:397–403.

    Article  Google Scholar 

  • Sondergaard, M. 1983. Hetrotrophic utilization and decomposition of extracellular carbon released by the aquatic angiospermLittorella uniflora (L.) Aschers. Aquatic Bot.16: 59–75.

    Article  Google Scholar 

  • —. 1988. Photosynthesis of aquatic plants under natural conditions. Pages 63–111, in J.J. Symoens (ed.) Vegetation of inland waters. Handbook of vegetation science 15/1. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Spence, D.H.N. 1982. The zonation of plants in freshwater lakes. Advan. Ecol. Res.12: 37–125.

    Google Scholar 

  • Spencer, N.R. &M. Lekic. 1974. Prospects for biological control of Eurasian Watermilfoil. Weed Sci.22(4): 401–404.

    Google Scholar 

  • Spencer, D.F. 1988. Competition between two pondweeds: Influence ofP. pectinatus tuber size. Internat. Symposium on physiological ecology of aquatic plants, aarhus, Denmark. Abstracts.

  • — &W. van Vierssen. 1988. Competition and the distribution of two submersed macrophytes in an irrigation canal. Bull. Ecol. Soc. Amer.69(2): 304.

    Google Scholar 

  • Spoehr, H.A., J.H.C. Smith, H.H. Strain, H.W. Milner & G.J. Hardin. 1949. Carnegie Inst. Washington Publ. 586. (cited from Rice 1984).

  • Srivastava, P.R. &L.K. Das. 1974. Effect of certain aqueous plant extracts on the germination ofCyperus rotundus L. Sci. & Cult.40(7): 318–319.

    Google Scholar 

  • Stangenberg, M. 1968. Bacteriostatic effects of some algae and Lemna minor extracts. Hydrobiologia32:88–96.

    Google Scholar 

  • Steeman-Nielsen, E. 1947. Photosynthesis of aquatic plants with special reference to the carbon sources. Dansk Botanisk Arkiv.12: 1–71.

    Google Scholar 

  • -. 1973. Hydrobiologi. Polyteknisk Forlag, Lyngby.

  • Sterry, P.R., J.D. Thomas &R.L. Patience. 1983. Behavioural responses ofBiomphalaria glabrata (Say) to chemical factors from aquatic macrophytes including decayingLemnapaucicostata andCeratophyllumdemersum. Freshwater Biol.13:465–476.

    Article  Google Scholar 

  • —,—&—. 1985. Changes in the concentration of short-chain carboxylic acids and gases during decomposition of the aquatic macrophytesLemnapaucicostata andCeratophyllum demersum. Freshwater Biol.15: 139–153.

    Article  CAS  Google Scholar 

  • Stevens, K.L. &G.B. Merrill. 1980. Growth inhibitors from spikerush. J. Agric. Food Chem.28: 644–646.

    Article  CAS  Google Scholar 

  • Steward, K.K. 1988. Competitive interaction between monoeciousHydrilla andVallisneria on soils of varying fertility. Final Report USDI-NPS/USDA-ARS, Fort Lauderdale, FL.

  • Stom, D.I. &R. Roth. 1981. Some effects of polyphenols on aquatic plants: 1. Toxicity of phenols in aquatic plants. Bull. Environm. Contam. Toxicol.27: 332–337.

    Article  CAS  Google Scholar 

  • Su, K.L., Y. Abul-Hajj &E.J. Staba. 1973a. Antimicrobial effects of aquatic plants from Minnesota. Lloydia36: 80–87.

    PubMed  CAS  Google Scholar 

  • —. 1973. Toxicity, anti-neoplastic and coagulation effects of aquatic plants from Minnesota. Lloydia36: 99–102.

    PubMed  CAS  Google Scholar 

  • —,—,— &Y. Abul-Hajj. 1973b. Preliminary chemical studies of aquatic plants from Minnesota. Lloydia35: 72–79.

    Google Scholar 

  • Sutton, D.L. 1986a. Growth of hydrilla (Hydrilla verticillata) in established stands of spikerush and slender arrowhead. J. Aquatic Pl. Managern.24: 16–20.

    Google Scholar 

  • —. 1986b. Influence of allelopathic chemicals on sprouting of hydrilla tubers. J. Aquatic Pl. Managern.24: 88–90.

    Google Scholar 

  • —. 1990. Growth ofSagittariasubulata and interaction with hydrilla. J. Aquatic Pl. Managern.28: 20–22.

    Google Scholar 

  • —,R.C. Littel &K.A. Langeland. 1980. Intraspecific competition ofHydrilla verticillata. Weed Sci.28:425–428.

    Google Scholar 

  • — &K.M. Portier. 1989. Influence of allelochemicals and aqueous plant extracts on growth of duckweed. J. Aquatic Pl. Managern.27:90–95.

    Google Scholar 

  • —&—. 1991. Influence of spikerush plants on growth and nutrient content of hydrilla. J. Aquatic Pl. Managern.29: 6–11.

    Google Scholar 

  • Svedang, M.U. 1990. The growth dynamics ofJuncus bulbosus - a strategy to avoid competition. Aquatic Bot.37:123–138.

    Article  Google Scholar 

  • Swindale, D.N. &J.T. Curtis. 1957. Phytosociology of the larger submerged plants in Winsconsin lakes. Ecology38:397–407.

    Article  Google Scholar 

  • Szczepanska, W. 1971. Allelopathy among the aquatic plants. Pol. Arch. Hydrobiol.18: 17–30.

    Google Scholar 

  • —. 1977a. Interactions ofPhragmites communis Trin. andCarex hudsonii Benett. Ekol. Pol.24: 431–436.

    Google Scholar 

  • —. 1977b. The effect of remains of helophytes on the growth ofPhragmitescommunis Trin. andTypha latifolia L. Ekol. Pol.25:437–445.

    Google Scholar 

  • —. 1987. Allelopathy in helophytes. Arch. Hydrobiol. Beih. Ergebn. Limnol.27:173–179.

    Google Scholar 

  • — &A.J. Szczepanski. 1982. Interactions betweenPhragmites australis (Cav.) Trin. ex Steud. andTypha latifolia L. Ekol. Pol.30(1-2): 165–186.

    Google Scholar 

  • Szczepanski, A.J. 1971. Allelopathy and other factors controlling the macrophytes production. Hidrobiologia12:193–197.

    Google Scholar 

  • —. 1977. Allelopathy as a means of biological control of water weeds. Aquatic Bot.3: 193–197.

    Article  Google Scholar 

  • Tag el Seed, M. 1978. Effect of pH on the nature of competition betweenE. crassipes andPistia stratiotes. J. Aquatic Pl. Managern.16: 53–57.

    Google Scholar 

  • Taheruzzaman, Q. &D.P. Kushari. 1991. Influence of leaf leachate enriched water of neem (Azadirachta indica A.Jun.) and shirish (Albizzia lebbek Benth.) on the growth ofEichhornia crassipes (Mart.) Solms. Aquatic Bot.40: 1–9.

    Article  Google Scholar 

  • Thomas, J.D. 1987. An evaluation of the interactions between freshwater pulmonate snail hosts of human schistosomes and macrophytes. Phil. Trans. R. Soc. London B315:75–125.

    Article  CAS  Google Scholar 

  • —. 1990. Mutualistic interactions in freshwater modular systems with molluscan components. Adv. Ecol. Res.20:125–178.

    Google Scholar 

  • — &A.I. Tait. 1984. Control of the snail hosts of schistosomiasis by environmental manipulation: A field and laboratory appraisal in the Ibadan area of Nigeria. Phil. Trans. R. Soc. London B305:201–253.

    Article  CAS  Google Scholar 

  • Thompson, K. 1987. The resource ratio hypothesis and the meaning of competition. Funct. Ecol.1: 297–303.

    Article  Google Scholar 

  • Tilman, D. 1987. On the meaning of competition and the mechanism of competitive superiority. Funct. Ecol.1:304–315.

    Article  Google Scholar 

  • —. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Titus, J.E. &M.S. Adams. 1979. Coexistence and the comparative light relations of the submersed macrophytes,Myriophyllum spicatum (L.) andVallisneria americana Michx. Oecologia40: 273–286.

    Article  Google Scholar 

  • — &M.D. Stephens. 1983. Neighbour influences and seasonal growth patterns forVallisneria americana in a mesotrophic lake. Oecologia56:23–29.

    Article  Google Scholar 

  • Tripathi, R.S. &P.P. Srivastava. 1970. Effect of aqueous plant extracts on the seed germination ofLycopersicumesculentum Mill. Sci. & Cult.36(1): 59–60.

    Google Scholar 

  • Tucker, C.S. 1983. Culture density and productivity ofPistia stratiotes. J. Aquatic Pl. Managem.21: 40–41.

    Google Scholar 

  • Tüxen, R. &E. Preising. 1942. Grundbegriffe und Methoden zum Studium der Wasser- und Sumpfpflanzengesellschaften. Dtsch. Wasserwirtschaft37:10–17, 57–69.

    Google Scholar 

  • Underwood, G.J.C. 1989. Interactions between freshwater pulmonate snails, macrophytes and epiphytes. D. Phil. thesis, Univ. of Sussex, Sussex, U.K.

    Google Scholar 

  • Van Aller, R.T., L.R. Clark, G.F. Pessoney &V.A. Rogers. 1983. A prostaglandin like fatty acid from a species in the cyperaceae. Lipids18(9): 617–621.

    Article  Google Scholar 

  • —,G.F. Pessoney, V.A. Rogers, E.J. Watkins &H.G. Leggett. 1985. Oxygenated fatty acids: A class of allelochemicals from aquatic plants. Pages 387–400, in A.C. Thompson (ed.) The chemistry of allelopathy. ACS Symposium series 268. American Chemical Society, Washington, D.C. USA.

    Google Scholar 

  • Van, T.K., W.T. Haller &G. Bowes. 1976. Comparison of the photosynthetic characteristics of three submerged aquatic plants. Pl. Physiol.58:761–768.

    Article  CAS  Google Scholar 

  • Van der Valk, A.G. 1981. Succession in wetlands: a Gleasonian approach. Ecology62:688–696.

    Article  Google Scholar 

  • —. 1987. Vegetation dynamics of freshwater wetlands: A selective review of the literature. Arch. Hydrobiol. Beiheft. Ergebn. limnol.27:27–40.

    Google Scholar 

  • — &C.B. Davis. 1976. Changes in the composition, structure and production of plant communities along a perturbed wetland coenocline. Vegetatio32: 87–96.

    Article  Google Scholar 

  • —&—. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marsheds. Ecology59:322–335.

    Article  Google Scholar 

  • van Montfrans, J., R.J. Orth &S.A. Vay. 1982. Primary studies of grazing byBittium varium on eelgrass periphyton. Aquatic Bot.14:75–89.

    Article  Google Scholar 

  • —,R.L. Wetzel &R.J. Orth. 1984. Epiphyte-grazer relationships in seagrass meadows: Consequences of seagrass growth and production. Estuaries7:289–309.

    Article  Google Scholar 

  • Van Schayck, I.C.P. 1985. Laboratory studies on the relation between aquatic vegetation and the presence of two Bilharzia-bearing snail species. J. Aquatic Pl. Managern.23: 87–91.

    Google Scholar 

  • Wajih, S.A. &A.C. Sinha. 1980. Growth regulating substances in the algal extracts ofChara zeylanica Kl. ex Willd. Indian J. Ecol.7:158–160.

    Google Scholar 

  • Wallace, J.W., T.J. Mabry &R.E. Alston. 1969. Phytochemistry8: 93.

    Article  CAS  Google Scholar 

  • Weidenhamer, J.D., D.C. Hartnett &J.T. Romeo. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol.26: 613–624.

    Article  CAS  Google Scholar 

  • Werner, D. &H. Pawlitz. 1978. Bull. Environ. Contam. Toxicol.20: 303. (cited from Stom & Roth, 1981).

    Article  PubMed  CAS  Google Scholar 

  • Westlake, D.F. (coordinator) 1980. Primary production. Pages 141–246, in E.D. LeCren & R.H. Lowe-McConnell (eds) The functioning of freshwater ecosystems. Cambridge University Press, London, U.K.

    Google Scholar 

  • -. 1981. Temporal changes in aquatic macrophytes and their environment. Dynamique de populations et qualite de l’ Eau.: 110–138.

  • Wetzel, R.G. 1969. Factors influencing photosynthesis and excretion of dissolved organic matter by aquatic macrophytes in hard water lakes. Verh. Int. Verein. Limnol.17: 72–85.

    Google Scholar 

  • —. 1983a. Attached algal substrate interactions. Fact or myth and when and how? Pages 207–215, in R.G. Wetzel (ed.) Periphyton of freshwater ecosystems. Develop. Hydrobiol. 17. W. Junk, The Hague.

    Google Scholar 

  • —. 1983b. Limnology. 2ed. Saunders College Publishing, Philadelphia, PA.

    Google Scholar 

  • —. 1988. Water as an environment for plant life. Pages 113–154, in J.J. Symoens (ed.) Vegetation of inland waters. Handbook of vegetation science 15/1. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • —. 1990. Land-water interface: Metabolic and limnologie regulators. Verh. Int. Ver. Limnol.24: 6–24.

    Google Scholar 

  • — &R.A. Hough. 1973. Productivity and role of aquatic macrophytes in lakes: An assessment. Pol. Arch. Hydrobiol.20: 9–19.

    CAS  Google Scholar 

  • Whigham, D.F., R.L. Simpson &M.A. Leck. 1979. The distribution of seeds, seedlings and established plants of Arrow arum (Peltandra virginica (L.) Kunth.) in a freshwater tidal wetland. Bull. Torrey Bot. Club106(3): 193–199.

    Article  Google Scholar 

  • Whittaker, R.H. &P.P. Feeney. 1971. Allelochemics: Chemical interactions between species. Science171:757–770.

    Article  PubMed  CAS  Google Scholar 

  • Willaman, J.J. &B.G. Schubert. 1961. Alkaloid bearing plants and their contained alkaloids. Tech. Bull. 1234. U.S. Dept Agric, Washington, D.C.

    Google Scholar 

  • Williamson, G.B. 1990. Allelopathy, Koch’s postulates and the neck riddle. Pages 143–162, in J.B. Grace & D. Tilman (eds.) Perspectives on plant competition. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Wilson, S.D. &P.A. Keddy. 1985a. The shoreline distribution ofJuncuspelocarpus along a gradient of exposure to waves: An exprimental study. Aquatic Bot.21:277–284.

    Article  Google Scholar 

  • —&—. 1985b. Plant zonation on a shoreline gradient: Physiological response curves of component species. J. Ecol.73: 851–860.

    Article  Google Scholar 

  • —&—. 1986a. Measuring diffuse competition along an environmental gradient: Results from a shoreline plant community. Amer. Naturalist127:862–869.

    Article  Google Scholar 

  • —&—. 1986b. Species competitive ability and position along a natural stress/disturbance gradient: Results. Ecology67: 1236–1242.

    Article  Google Scholar 

  • —&—. 1991. Competition, survivorship and growth in macrophyte communities. Freshwater Biol.25: 331–337.

    Article  Google Scholar 

  • Wium-Anderson, S. 1987. Allelopathy among aquatic plants. Arch. Hydrobiol. Beih., Ergebn. Limnol.27:167–172.

    Google Scholar 

  • —,U. Anthoni, C. Christopherson &G. Houen. 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos39:187–190.

    Article  Google Scholar 

  • —&— &G. Houen. 1983. Elemental sulphur, a possible allelopathic compound fromCeratophyllumdemersum. Phytochemistry22(11): 2613.

    Article  Google Scholar 

  • — &J. Borum. 1980. Biomass and production of eelgrass (Zostera marina L.) in the Oresund, Denmark. Ophelia19(1): 49–55.

    Google Scholar 

  • —&— &J. Borum. 1984. Biomass variation and autotrophic production of an epiphyte-macrophyte community in a coastal Danish area. l. Eelgrass (Zostera marina L.) biomass and net production. Ophelia23(1): 33–46.

    Google Scholar 

  • Wolek, J. 1974. A preliminary investigation on interactions (competition, allelopathy) between some species ofLemna, Spirodela andWolffla. Ber. Geobot. Inst. Eidg. Techn. Hochschule, Stift. Rubel,42:140–162.

    Google Scholar 

  • —. 1979. Competiton and allelopathybetweenSpirodelapolyrrhiza andWolffia arrhiza. Fragm. Flor. Geobot. (Cracow)25(2): 281–350.

    Google Scholar 

  • —. 1984. Intraspecific variation and the competitive abilities ofSpirodela polyrrhiza (L.) Schleiden. Ekol. Pol.32: 637–649.

    Google Scholar 

  • Wolfe, J.M. &E.L. Rice. 1979. Allelopathic interactions among algae. J. Chem. Ecol.5: 533–542.

    Article  Google Scholar 

  • Wooten, J.W. &S.D. Elakovich. 1991. Comparisons of potential allelopathy of seven freshwater species of spikerushes (Eleocharis). J. Aquatic Pl. Managem.29:12–15.

    Google Scholar 

  • Wrobel, J.T. 1967.Nuphar alkaloids. Pages 441–465, in R.H.F. Manske (ed.) The alkaloids: chemistry and physiology. Academic Press, N.Y.

    Google Scholar 

  • Yamasaki, S. 1990. Population dynamics in overlapping zones ofPhragmites australis andMiscanthus saccharifolius. Aquatic Bot.36:367–377.

    Article  Google Scholar 

  • Yan, N.D., G.E. Miller, I. Wile &G.G. Hitchin. 1985. Richness of aquatic macrophyte floras of softwater lakes of differing pH and trace metal content in Ontario, Canada. Aquatic Bot.23: 27–40.

    Article  CAS  Google Scholar 

  • Yeo, R.R. 1972. Control of rooted submerged aquatic weeds with competitive plants. Weed Science Society of America, Meeting Abstracts, St Louis, MO.

    Google Scholar 

  • -. 1976. Naturally occurring antagonistic relationships among aquatic plants that may be useful in their management. Pages 290–293,in Proceedings IV Intern. Symp. Biol. Control Weeds, Gainesville, FL.

  • —. 1980. Spikerush may help control water weeds. Calif. Agric.34: 13–14.

    Google Scholar 

  • —. 1980. Life history and ecology of dwarf spikerush (Eleocharis coloradoensis). Weed Sci.28:263–272.

    Google Scholar 

  • — &T.W. Fisher. 1970. Progress and potential for biological weed control with fish, pathogens, competitive plants and snails. Pages 450–463 in Technical papers of FAO international conference on weed control, June 22-July 1. Weed Science Society of America, Davis, CA.

    Google Scholar 

  • — &J. R. Thurston. 1984. The effect of dwarf spikerush (Eleocharis coloradoensis) on several submersed aquatic weeds. J. Aquatic Pl. Managern.22: 52–56.

    Google Scholar 

  • Yoda, K., T. Kira, H. Ogawa &K. Hozumi. 1963. Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI). J. Biol., Osaka City Univ.14:107–129.

    Google Scholar 

  • Zapata, O. &C. McMillan. 1979. Phenolic acids in seagrasses. Aquatic Bot.7: 307–317.

    Article  CAS  Google Scholar 

  • Zutshi, D.P. &K.K. Vass. 1976. Ecology of macrophytic vegetation of Kashmir lakes. Pages 141–146, in C.K. Varshney & J. Rzoska (eds.) Aquatic weeds in south east Asia. W. Junk, The Hague.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, B., Goel, U. Competition and allelopathy in aquatic plant communities. Bot. Rev 59, 155–210 (1993). https://doi.org/10.1007/BF02856599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856599

Keywords

Navigation