Skip to main content
Log in

A local view of the Kondo effect: Scanning tunneling spectroscopy

  • Review
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The fascinating many-body physics involved in the interaction of a single magnetic impurity with the conduction electrons of its nonmagnetic metallic host is reflected in unconventional phenomena in magnetism, transport properties and the specific heat. Characteristic low-energy excitations, termed the Kondo resonance, are generally believed to be responsible for this striking behaviour. However, in spite of an intense research for over more than 30 years, a direct spectroscopic observation of the Kondo resonance on individual magnetic adatoms withstood experimental efforts hitherto. The development of low-temperature scanning tunneling microscopes (STM) operating under ultrahigh vacuum (UHV) conditions has provided new opportunities for investigating locally the electronic structure at surfaces. At low temperatures, due to the reduced broadening of the Fermi level of the STM tip and the sample, rather high energy resolution (≤ 1 meV) in scanning tunneling spectroscopy (STS) is achievable. Moreover, the absence of diffusion together with the spatial resolution of the STM enables detailed studies of electronic states on and near single adsorbed atoms and other nanoscale structures. Recently, for the first time, two such STS/STM experiments spatially resolved the electronic properties of individual magnetic adatoms displaying the Kondo effect. In particular, the observed Fano lineshape of the Kondo resonance reveals unambiguously the details of the quantum mechanical interference between the localized orbital and the conduction electrons on an atomic length scale [1,2]. This achievement of the detection of individual magnetic atoms with atomic resolution opens new perspectives for probing magnetic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J T Li, W-D Schneider, R Berndt and B Delley,Phys. Rev. Lett. 80, 2893 (1998)

    Article  ADS  Google Scholar 

  2. V Madhavan, W Chen, T Jamneala, M F Crommie and N S Wingreen,Science 280, 569 (1998)

    Article  ADS  Google Scholar 

  3. J Friedel,Phil. Mag. Suppl. 3, 446 (1954)

    Google Scholar 

  4. J Friedel,Nuovo Cimento Suppl. 7, 287 (1958)

    Article  Google Scholar 

  5. J Kondo,Progr. Theor. Phys. 32, 37 (1964)

    Article  ADS  Google Scholar 

  6. P W Anderson,Phys. Rev. 124, 41 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  7. O Gunnarsson and K Schönhammer, inHandbook on the Physics and Chemistry of Rare Earths edited by K A Gschneidner, L Eyring and S Hüfner (Elsevier Publisher, Amsterdam, 1987) and references therein, vol. 10, pp. 103

    Google Scholar 

  8. Y Baer and W-D Schneider, inHandbook on the Physics and Chemistry of Rare Earths edited by K A Gschneidner, L Eyring and S Hüfner (Elsevier Publisher, Amsterdam, 1987) and references therein, vol. 10, pp. 1–73

    Google Scholar 

  9. J W Allen, inSynchrotron Radiation Research: Advances in Surface and Interface Science edited by R Z Bachrach (Plenum, New York, 1992) vol. 1 pp. 253–323

    Google Scholar 

  10. A A Abrikosov,Physics 2, 5, 61 (1965)

    Google Scholar 

  11. H Suhl, inTheory of Magnetism in Transition Metals edited by W Marshall (Academic, London, 1967) pp. 116–205

    Google Scholar 

  12. G Gruner and A Zawadowski,Rep. Prog. Phys. 37, 1479 (1974)

    Article  Google Scholar 

  13. PA Lee, T M Rice, J W Serene, L S Sham, and J W Wilkins,Comm. Condens. Matter Phys. 12, 99(1986)

    Google Scholar 

  14. A C Hewson,The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993)

    Google Scholar 

  15. D W Lynch and J H Weaver, inHandbook on the Physics and Chemistry of Rare Earths edited by K A Gschneidner, L Eyring and S Hüfner (Elsevier Publisher, Amsterdam, 1987) and references therein, vol. 10, pp. 231–300

    Google Scholar 

  16. F Mezei and A Zawadowski,Phys. Rev. B3, 167, 3127 (1971)

    ADS  Google Scholar 

  17. F Patthey, B Delley, W-D Schneider and Y Baer,Phys. Rev. Lett. 55, 1518 (1985)

    Article  ADS  Google Scholar 

  18. F Patthey, W-D Schneider, Y Baer and B Delley,Phys. Rev. Lett. 58, 2810 (1987)

    Article  ADS  Google Scholar 

  19. F Patthey, J-M Imer, W-D Schneider, H Beck, Y Baer and B Delley,Phys. Rev. Lett. 42, 8864 (1990)

    ADS  Google Scholar 

  20. D Malterre, M Grioni and Y BaerAdv. Phys. 45, 299 (1996)

    Article  ADS  Google Scholar 

  21. M Gamier, K Breuer, D Purdie, M Hengsberger, Y Baer and B Delley,Phys. Rev. Lett. 78, 4127 (1997)

    Article  ADS  Google Scholar 

  22. E Wuilloud, H R Moser, W-D Schneider and Y Baer,Phys. Rev. B28, 7354 (1983)

    ADS  Google Scholar 

  23. F U Hillebrecht and M Campagna, inHandbook on the Physics and Chemistry of Rare Earths edited by K A Gschneidner, L Eyring and S Hüfner (Elsevier Publisher, Amsterdam, 1987) and references therein, vol. 10, pp. 425–451

    Google Scholar 

  24. P Coleman,Phys. Rev. B29, 3035 (1984)

    ADS  Google Scholar 

  25. S Bermon and C K So,Phys. Rev. Lett. 40, 53 (1978)

    Article  ADS  Google Scholar 

  26. S Gregory,Phys. Rev. Lett. 68, 2070 (1992)

    Article  ADS  Google Scholar 

  27. D C Ralph and R A Buhrman,Phys. Rev. Lett. 72, 3401 (1994)

    Article  ADS  Google Scholar 

  28. E L Wolf,Principles of Electron Tunneling Microscopy (Oxford Univ. Press, New York, 1985)

    Google Scholar 

  29. V Chandresakar, P Santhanam, N A Penebre, R A Webb, H Vloeberghs, C Van Haesendonck and Y Bruynseraede,Phys. Rev. Lett. 72, 2053 (1994)

    Article  ADS  Google Scholar 

  30. M A Blachly and N Giordano,Phys. Rev. B51, 121537 (1995)

    Google Scholar 

  31. D Goldhaber-Gordon, Hadas Shtrikman, D Mahalu, David Abusch-Magder, U Meirav and M A Kastner,Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  32. S M Cronenwett, Tjerk H Oosterkamp and Leo P Kouwenhoven,Science 281, 540 (1998)

    Article  ADS  Google Scholar 

  33. T K Ng and P A Lee,Phys. Rev. Lett. 61, 1768 (1988)

    Article  ADS  Google Scholar 

  34. L I Glazman and M E Raikh,JETP Lett. 47, 452 (1988)

    ADS  Google Scholar 

  35. Y Meir, N S Wingreen and P A Lee,Phys. Rev. Lett. 70, 2601 (1993)

    Article  ADS  Google Scholar 

  36. N S Wingreen and Y Meir,Phys. Rev. B49, 11040 (1994)

    ADS  Google Scholar 

  37. R Lopez, R Aguado, G Platero and C Tejedor,Phys. Rev. Lett. 81, 4688 (1998)

    Article  ADS  Google Scholar 

  38. M F Crommie, C P Lutz and D M Eigler,Phys. Rev. B48, 2851 (1993)

    ADS  Google Scholar 

  39. M F Crommie, C P Lutz and D M Eigler,Nature 363, 524 (1993)

    Article  ADS  Google Scholar 

  40. E J Heller, M F Crommie, C P Lutz and D M Eigler,Nature 369, 464 (1994)

    Article  ADS  Google Scholar 

  41. Y Hasegawa and Ph Avouris,Phys. Rev. Lett. 71, 1071 (1993)

    Article  ADS  Google Scholar 

  42. Ph Avouris and I-W Lyo,Science 264, 942 (1994)

    Article  ADS  Google Scholar 

  43. J T Li, W-D Schneider and R Berndt,Phys. Rev. B56, 7656 (1997)

    ADS  Google Scholar 

  44. A Yazdani, B A Jones, C P Lutz, M F Crommie and D M Eigler,Science 275, 1767 (1997)

    Article  Google Scholar 

  45. R Gaisch, J K Gimzewski, B Reihl, R R Schüttler, M Tschudy and W-D Schneider,Ultramicroscopy 42–44, 1621 (1992)

    Article  Google Scholar 

  46. J T Li, Manipulation and spectroscopy at the atomic level, PhD thesis (University of Lausanne, Switzerland, 1997)

    Google Scholar 

  47. J Tersoff and D R Hamann,Phys. Rev. B58, 45 (1987)

    Google Scholar 

  48. N D Lang,Phys. Rev. B34, 5947 (1986)

    ADS  Google Scholar 

  49. J T Li, W-D Schneider, R Berndt and S Crampin,Phys. Rev. Lett. 80, 3332 (1998)

    Article  ADS  Google Scholar 

  50. R Paniago, R Matzdorf, G Meister and A Goldmann,Surf. Sci. 336, 113 (1995)

    Article  ADS  Google Scholar 

  51. J T Li, W-D Schneider, R Berndt, O R Bryant and S Crampin,Phys. Rev. Lett. 81, 4464 (1998)

    Article  ADS  Google Scholar 

  52. J T Li, W-D Schneider, S Crampin and R Berndt,Surf. Sci. 422, 95 (1999)

    Article  ADS  Google Scholar 

  53. S Hershfield, J H Davies, and J W Wilkins,Phys. Rev. Lett. 67, 3720 (1991)

    Article  ADS  Google Scholar 

  54. P Monachesi, L C Andreani, A Continenza and A K McMahan,J. Appl. Phys. 73, 6634 (1993)

    Article  ADS  Google Scholar 

  55. N D Lang,Phys. Rev. Lett. 58, 45 (1987)

    Article  ADS  Google Scholar 

  56. U Fano,Phys. Rev. 124, 1866 (1961)

    Article  MATH  ADS  Google Scholar 

  57. D Riegel and K D Gross,Physica B163, 678 (1990)

    ADS  Google Scholar 

  58. M D Daybell and W A Steyert,Rev. Mod. Phys. 40, 380 (1968)

    Article  ADS  Google Scholar 

  59. W Wei, R Rosenbaum, and G Bergmann,Phys. Rev. B39, 4568 (1989)

    ADS  Google Scholar 

  60. J V Barth, H Brune, G Ertl and R J Behm,Phys. Rev. B42, 9307 (1990)

    ADS  Google Scholar 

  61. S D Kevan and R H Gaylord,Phys. Rev. B36, 5809 (1987)

    ADS  Google Scholar 

  62. Y Meir and N S Wingreen,Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  63. D M Eigler and E K Schweizer,Nature 344, 524 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Dieter Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, WD. A local view of the Kondo effect: Scanning tunneling spectroscopy. Pramana - J Phys 52, 537–552 (1999). https://doi.org/10.1007/BF02829862

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829862

Keywords

PACS Nos

Navigation