Skip to main content
Log in

Standard monomial bases and geometric consequences for certain rings of invariants

  • Published:
Proceedings of the Indian Academy of Sciences - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Consider the diagonal action ofSL n (K) on the affine spaceX = V⊕m ⊕ (V*)⊕q whereV = K n,K an algebraically closed field of arbitrary characteristic andm,q > n. We construct a ‘standard monomial’’ basis for the ring of invariantsK[X]SL n (K). As a consequence, we deduce thatK[X]SL n (K) is Cohen-Macaulay. We also present the first and second fundamental theorems forSL n (K)- actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boutot J F, Singularités rationnelles et quotients par les groups réductifs,Invent. Math. 88 (1987) 65–68

    Article  MATH  MathSciNet  Google Scholar 

  2. Caldero P, Toric degenerations of Schubert varieties,Transform. Groups 7 (2002) 51–60

    MATH  MathSciNet  Google Scholar 

  3. Chirivi R, LS algebras and application to Schubert varieties,Transform. Groups 5 (3) (2000) 245–264

    Article  MATH  MathSciNet  Google Scholar 

  4. De Concini C, Eisenbud D and Procesi C, Hodge algebras,Asterisque 91 (1982)

  5. De Concini C and Lakshmibai V, Arithmetic Cohen-Macauleyness and arithmetic normality for Schubert varieties,Am. J. Math. 103 (1981) 835–850

    Article  MATH  Google Scholar 

  6. De Concini C and Procesi C, A characteristic-free approach to invariant theory,Adv. Math. 21 (1976) 330–354

    Article  MATH  Google Scholar 

  7. Doubilet P, Rota G C and Stein J, On the foundations of combinatorial theory: IX Combinatorial methods in invariant theory,Stud. Appl. Math. 53 (1974) 185–216

    MATH  MathSciNet  Google Scholar 

  8. Eisenbud D and Sturmfels B, Binomial ideals,Duke Math. J. 84 (1996) 1–45

    Article  MATH  MathSciNet  Google Scholar 

  9. Gonciulea N and Lakshmibai V, Degenerations of Flag and Schubert varieties to toric varieties,Transform. Groups 1 (3) (1996) 215–248

    Article  MATH  MathSciNet  Google Scholar 

  10. Hartshone R, Algebraic Geometry, Graduate Texts in Math. (Springer-Verlag) (1997) vol. 52

  11. Hibi T, Distributive lattices, affine semigroup rings, and algebras with straightening laws,Commutative Algebra and Combinatorics, Advanced Studies in Pure Math. 11 (1987) 93–109

    MathSciNet  Google Scholar 

  12. Hodge W V D, Some enumerative results in the theory of forms,Proc. Camb. Philos. Soc. 39 (1943) 22–30

    MATH  MathSciNet  Google Scholar 

  13. Hodge W V D and Pedoe D, Methods of algebraic geometry (Cambridge University Press) (1952) vol.II

  14. Huneke C and Lakshmibai V, Degeneracy of Schubert varieties,Contemp. Math. 139 (1992) 181–235

    MathSciNet  Google Scholar 

  15. Lakshmibai V and Gonciulea N, Flag varieties, Hermann Éditeurs des Sciences et des Arts (2000)

  16. Lakshmibai V and Seshadri C S, Geometry of G/P - II,Proc. Ind. Acad. Sci. 87A (1978) 1–54

    Article  MathSciNet  Google Scholar 

  17. Mehta V B and Ramadas T R, Moduli of vector bundles, Frobenius splitting and invariant theory,Ann. Math. 144 (1996) 269–313

    Article  MATH  MathSciNet  Google Scholar 

  18. Mehta V B and Ramadas T, Frobenius splitting and invariant theory,Transform. Groups 2 (2) (1997) 183–195

    Article  MATH  MathSciNet  Google Scholar 

  19. Mehta V B and Trivedi V, The variety of circular complexes and F-splitting,Invent. Math. 137 (1999) 449–460

    Article  MATH  MathSciNet  Google Scholar 

  20. Mumford D, The red book of varieties and schemes, Lecture Notes in Math. 1358 (Springer-Verlag)

  21. Musili C, Postulation formula for Schubert varieties,J. Indian. Math. Soc. 36 (1972) 143–171

    MathSciNet  MATH  Google Scholar 

  22. Ramanathan A, Schubert varieties are arithmetically Cohen-Macaulay,Invent. Math. 80 (1985) 283–294

    Article  MATH  MathSciNet  Google Scholar 

  23. Seshadri C S, Introduction to the theory of standard monomials, Brandeis Lecture Notes 4 (1985)

  24. Sturmfels B, Gröbner bases and convex polytopes, University Lecture Series vol. 8,Am. Math. Soc. (1996)

  25. Weyl H, The classical groups (Princeton University Press) (1946)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lakshmibai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmibai, V., Shukla, P. Standard monomial bases and geometric consequences for certain rings of invariants. Proc. Indian Acad. Sci. (Math. Sci.) 116, 9–36 (2006). https://doi.org/10.1007/BF02829736

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829736

Keywords

Navigation