Skip to main content

Sums of squares of Littlewood–Richardson coefficients and GL n -harmonic polynomials

  • Chapter
  • First Online:
Symmetry: Representation Theory and Its Applications

Part of the book series: Progress in Mathematics ((PM,volume 257))

Abstract

We consider the example from invariant theory concerning the conjugation action of the general linear group on several copies of the n × n matrices, and examine a symmetric function which stably describes the Hilbert series for the invariant ring with respect to the multigradation by degree. The terms of this Hilbert series may be described as a sum of squares of Littlewood–Richardson coefficients. A “principal specialization” of the gradation is then related to the Hilbert series of the K-invariant subspace in the GL n -harmonic polynomials (in the sense of Kostant), where K denotes a block diagonal embedding of a product of general linear groups. We also consider other specializations of this Hilbert series.

To Nolan Wallach, who has influenced generations of mathematicians

This research was supported by the National Security Agency grant # H98230-09-0054.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. David Benson, Walter Feit, and Roger Howe, Finite linear groups, the Commodore 64, Euler and Sylvester. Amer. Math. Monthly, 93(9):717–719, 1986.

    Google Scholar 

  2. C. Chevalley, Sur certains groupes simples. Tôhoku Math. J. (2), 7:14–66, 1955.

    Google Scholar 

  3. Vesselin Drensky, Computing with matrix invariants. Math. Balkanica (N.S.), 21(1–2):141–172, 2007.

    Google Scholar 

  4. William Fulton, Young tableaux, Vol. 35, London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry.

    Google Scholar 

  5. Roe Goodman and Nolan R. Wallach, Symmetry, Representations, and Invariants, Vol. 255, Graduate Texts in Mathematics. Springer, New York, 2009.

    Google Scholar 

  6. Timothy Gowers, June Barrow-Green, and Imre Leader (editors), The Princeton Companion to Mathematics. Princeton University Press, Princeton, NJ, 2008.

    Google Scholar 

  7. Pamela E. Harris, On the adjoint representation of \(\mathfrak{s}\mathfrak{l}_{n}\) and the Fibonacci numbers. C. R. Math. Acad. Sci. Paris, 349(17–18):935–937, 2011.

    MathSciNet  MATH  Google Scholar 

  8. W. H. Hesselink, Characters of the nullcone. Math. Ann., 252(3):179–182, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  9. Roger Howe and Soo Teck Lee, Bases for some reciprocity algebras. I. Trans. Amer. Math. Soc., 359(9):4359–4387, 2007.

    Google Scholar 

  10. Roger Howe and Soo Teck Lee, Why should the Littlewood-Richardson rule be true? Bull. Amer. Math. Soc. (N.S.), 49(2):187–236, 2012.

    Google Scholar 

  11. Roger Howe, Eng-Chye Tan, and Jeb F. Willenbring, Stable branching rules for classical symmetric pairs. Trans. Amer. Math. Soc., 357(4):1601–1626, 2005.

    Google Scholar 

  12. Bertram Kostant, Lie group representations on polynomial rings. Amer. J. Math., 85:327–404, 1963.

    Google Scholar 

  13. I. G. Macdonald, Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.

    Google Scholar 

  14. C. Procesi, The invariant theory of n × n matrices. Advances in Math., 19(3):306–381, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  15. Claudio Procesi, The invariants of n × n matrices. Bull. Amer. Math. Soc., 82(6):891–892, 1976.

    Google Scholar 

  16. Richard Stong, Some asymptotic results on finite vector spaces. Adv. in Appl. Math., 9(2):167–199, 1988.

    Google Scholar 

  17. N. R. Wallach and J. Willenbring, On some q-analogs of a theorem of Kostant-Rallis. Canad. J. Math., 52(2):438–448, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeb F. Willenbring, Stable Hilbert series of \(\mathcal{S}(\mathfrak{g})^{K}\) for classical groups. J. Algebra, 314(2): 844–871, 2007.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela E. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harris, P.E., Willenbring, J.F. (2014). Sums of squares of Littlewood–Richardson coefficients and GL n -harmonic polynomials. In: Howe, R., Hunziker, M., Willenbring, J. (eds) Symmetry: Representation Theory and Its Applications. Progress in Mathematics, vol 257. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-1590-3_11

Download citation

Publish with us

Policies and ethics