Skip to main content
Log in

The role of large rhizome dispersal and low salinity windows in the establishment of common reed,Phragmites australis, in salt marshes: New links to human activities

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

In spite of its long history,Phragmites australis’ (Cav.) Trin ex Stuedel invasion in tidal marshes defies explanation. Initial establishment in these systems is particularly perplexing, because seedlings and rhizome fragments do not perform well in poorly drained saline environments. We tested the possibility that dispersal and burial of large rhizomes, periods of low salinity, and localized, well-drained areas facilitate initial establishment in brackish marshes. In a greenhouse we exposed large and small rhizomes to two drainage treatments: mimics of poorly-drained, high marsh interiors and mimics of well-drained, mosquito ditch banks. In well-drained treatments we exposed rhizomes to one of three salinity treatments: fresh, natural salinity regime of an invaded brackish water marsh, and a 2-wk freshwater window followed by a natural salinity regime. Small rhizone fragments did not emerge in saline treatments or treatments with high water tables, while emergence was spotty in well-drained freshwater treatments. Large rhizomes emerged only in well-drained, treatments. For large rhizomes, growth, survival, and clonal spread decreased when exposed to the natural salinity regime, but improved with exposure to the 2-wk freshwater window. These results suggest that dispersal and burial of larger rhizomes, well-drained features, and low salinity windows following dispersal improve the chances of successful establishment. These results help explain case-specific historical links between establishment and such human activities as hydrological alterations, construction activities, and lowered salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adams, J. andG. Bate. 1999. Growth and photosynthetic performance ofPhragmites australis in estuarine waters: A field and experimental approach.Aquatic Botany 64:359–367.

    Article  Google Scholar 

  • Agosta, K. 1985. The effects of tidally induced change in the creek-bank water table on pore water chemistry.Estuarine, Coastal and Shelf Science 21:398–400.

    Article  Google Scholar 

  • Ailstock, M., C. Norman, andP. Bushmann. 2001. Common reedPhragmites australis. Control and effects upon biodiversity in freshwater nontidal wetlands.Restoration Ecology 9:49–59.

    Article  Google Scholar 

  • Amesberry, L., M. Baker, P. Ewanchuk, andM. Bertness. 2000. Clonal integration and the expansion ofPhragmites australis.Ecological Applications 10:1110–1118.

    Article  Google Scholar 

  • Angradi, T., S. Hagan, andK. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.

    Article  Google Scholar 

  • Armstrong, J., F. Afreen-Zobayed, andW. Armstrong. 1996.Phragmites die-back: Sulphide- and acetic acid-induced bud and root death, lignifications, and blockages within aeration and vascular systems.New Phytologist 134:601–614.

    Article  CAS  Google Scholar 

  • Barclay, A. M. andR. M. M. Crawford. 1982. Plant growth and survival under strict anaerobiosis.Journal of Experimental Botany 33:541–549.

    Article  Google Scholar 

  • Bart, D. J. 1997. The use of local knowledge in understanding ecological change: A study of salt hay farmers' knowledge ofPhragmites australis invasion. Master's Thesis, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Bart, D. J. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.Oikos 89:59–69.

    Article  Google Scholar 

  • Bart, D. J. andJ. M. Hartman. 2002. Constraints on the establishment ofPhragmites australis in a New Jersey salt marsh and possible links to human disturbance.Wetlands 22:201–213.

    Article  Google Scholar 

  • Bertness, M. D., P. J. Ewanchuk, andB. R. Silliman, 2002. Anthropogenic modification of New England salt marsh landscapesProceedings of the National Academy of Sciences of the United States 99:1395–1398.

    Article  CAS  Google Scholar 

  • Brändle, R. 1985., Kohlehydratgehalte und vitalitt isolierter rhizome vonPhragmites australis, Schoeneplectus lacustris andTypha latifolia nach mehrwochigem sauerstoffmanglestress.Flora 177:317–321.

    Google Scholar 

  • Brändle, R. andR. M. M. Crawford. 1987. Rhizome anoxia tolerance and habitat specialization in wetland plants, p. 397–410.In R. M. M. Crawford (ed.), Plant Life in Aquatic and Amphibious Habitats. Blackwell,, Oxford, U.K.

    Google Scholar 

  • Burdick, D. M., R. Buchsbaum, andE. Holt. 2000. Variation in soil salinity associated with expansion ofPhragmites australis in salt marshes.Environmental and Experimental Botany 46:247–261.

    Article  Google Scholar 

  • Burdick, D. M. andR. A. Konisky. 2003. Understanding the success ofPhragmites australis, common reed, as it exploits human impacts to coastal marshes.Estuaries 26:407–416.

    Article  Google Scholar 

  • Chambers, R. M. 1997. Porewater chemistry associated withPhragmites andSpartina in a Connecticut tidal marsh.Wetlands 17:360–367.

    Google Scholar 

  • Chambers, R. M., L. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Chambers, R. M., T. J. Modzer, andJ. C. Ambrose. 1998. Effects of salinity and sulfide on the distribution ofPhragmites australis andSpartina alterniflora in a tidal marsh.Aquatic Botany 62: 161–169.

    Article  CAS  Google Scholar 

  • Chambers, R. M., D. T. Osgood, D. J. Bart, andF. Montalto. 2003.Phragmites australis invasion and expansion in tidal wetlands: Interactions among salinity, sulfide, and hydrology.Estuaries 26:398–406.

    Article  CAS  Google Scholar 

  • Ferren W., R. Good, R. Walker, andJ. Arsenault. 1981. Vegetation and flora of Hog Island, a brackish wetland in the Mullica River, New Jersey.Bartonia 48:1–10.

    Google Scholar 

  • Fogli, S., R. Marchesini, andR. Gerdol. 2002. Reed (Phragmites australis) decline in a brackish wetland in Italy.Marine Environmental Research 53:465–479.

    Article  CAS  Google Scholar 

  • Harshburger, J. andV. Burns. 1919. The vegetation of the Hackensack Marsh: A typical American fen.Transactions of the Wagner Free Institute of Science of Philadelphia 4:1–34.

    Google Scholar 

  • Hartzendorf, T. andH. Rolletschek. 2001. Effects of NaCl-salinity on amino acid and carbohydrate contents ofPhragmites australis.Aquatic Botany 69:195–208.

    Article  CAS  Google Scholar 

  • Headlee, T. 1945. The Mosquitoes of New Jersey and Their Control. Rutgers University Press, New Brunswick, New Jersey.

    Google Scholar 

  • Hellings, S. andJ. Gallagher. 1992. The effects of salinity and flooding onPhragmites australis.Journal of Applied Ecology 29: 41–49.

    Article  Google Scholar 

  • Hemond, H. andJ. Fifield. 1982. Subsurface flow in salt marsh peat: A model and field study.Limnology and Oceanography 27: 126–136.

    Article  Google Scholar 

  • Keller, B. 2000. Genetic variation among and within populations ofPhragmites australis in the Charles River watershed.Aquatic Botany 66:195–208.

    Article  Google Scholar 

  • Kent, D., C. Tammi, andJ. Kelly. 1996. Large scale, human made disturbances have little effect on the amount of common reed in salt marshes (Massachusetts).Restoration and Management Notes 14:172–173.

    Google Scholar 

  • Lathrop, R. G., L. Windham, andP. Montesano. 2003. DoesPhragmiles expansion alter the structure and function of marsh landscapes? Pattern and processes revisited.Estuaries 26:423–435.

    Article  Google Scholar 

  • Lissner, J. andH.-H. Schierup. 1997. Effects of salinity on the growth ofPhragmites australis.Aquatic Botany 55:247–260.

    Article  CAS  Google Scholar 

  • Matoh, T., N. Matsushita, andE. Takakashi. 1988. Salt tolerance of the reed plantPhragmites communis.Physiologia Plantarum 72:8–14.

    Article  Google Scholar 

  • Mauchamp, A., S. Blanch, andP. Grillas. 2001. Effects of submergence on the growth ofPhragmites australis seedlings.Aquatic Botany 70:39–52.

    Article  CAS  Google Scholar 

  • Mauchamp, A. andM. Mésleard. 2001. Salt tolerance inPhragmites australis populations from coastal Mediterranean marshes.Aquatic Botany 70:39–52.

    Article  CAS  Google Scholar 

  • Meyerson, L., K. Vogt, andR. Chambers. 2000. Linking the success ofPhragmites to the alteration of ecosystem nutrient cycles, p. 817–834.In M. Weinstein (ed.), Concepts and Controversies in Tidal. Marsh Ecology Academy of Natural Sciences, Philadelphia, Pennsylvania.

    Google Scholar 

  • Montalto, F. A., T. Steenhuis, andJ. Y. Parlange. 2002. The restoration of tidal marsh hydrology, p. 33–47.In C. Brebbia (ed.), Coastal Environment: Environmental Problems in Coastal Regions IV. Wessex Institute of Technology Press, Southampton, U.K.

    Google Scholar 

  • Nuttle, W. 1988. The extent of lateral water movement in the sediments of a New England salt marsh.Water Resources Research 24:2077–2085.

    Article  Google Scholar 

  • Nuttle, W. andH. Hemmond. 1988. Salt marsh hydrology: Implications of biogeochemical fluxes to the atmosphere and estuaries.Global Biogeochemical Cycles 2:91–114.

    Article  Google Scholar 

  • Public Service Electric & Gas Company. 1995. Commercial Township Salt Hay Farm Wetland Restoration Management Plan. EEP951179 Salem, New Jersey.

  • Rice, D., J. Rooth, andJ. Stevenson. 2000. Colonization and expansion ofPhragmites australis in upper Chesapeake Bay tidal marshes.Wetlands 20:280–299.

    Article  Google Scholar 

  • Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.

    Article  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion be a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings of the National Academy of Sciences 99:2445–2449.

    Article  CAS  Google Scholar 

  • Shumway, S. W. 1995. Physiological integration among clonal ramets during invasion of disturbance patches in a New England salt marsh.Annals of Botany 76:225–233.

    Article  Google Scholar 

  • Van der Putten, W. H. 1997. Die-back ofPhragmites australis in European wetlands: An overview of the European Research Programme on reed die-back and progression (1993–1994).Aquatic Botany 59:263–275.

    Article  Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, C. G. Rilling, andR. A. Fertik. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24: 90–107.

    Article  Google Scholar 

  • Weinstein, M. andJ. Balletto. 1999. Does the common reed,Phragmites australis, affect essential fish habitat?Estuaries 22: 793–802.

    Article  Google Scholar 

  • Weisner, S., W. Graneli, andB. Ekstam. 1993. Influence of submergence on growth of seedlings ofScirpus lacustris andPhragmites australis.Freshwater Botany 29:371–375.

    Article  Google Scholar 

  • Wijte, A. H. B. andJ. Gallagher. 1996a Effects of oxygen availability and salinity on early life history stages of salt marsh plants. I. Different germination strategies ofSpartina alterniflora andPhragmites australis (Poaceae).American Journal of Botany 83:1337–1342.

    Article  Google Scholar 

  • Wijte, A. H. B. andJ. Gallagher. 1996b. Effects of oxygen availability and salinity on early life history stages of salt marsh plants II. Early seedling development advantage ofSpartina alterniflora overPhragmites australis (Poaceae).American Journal of Botany 83:1343–1350.

    Article  Google Scholar 

  • Windham, L. 1995. Effects of thePhragmites australis invasion on aboveground biomass and soil properties in brackish tidal mars of the Mullica River, NJ. Master's Thesis, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Winogrond, H. G. andE. Kiviat. 1997. Invasion ofPhragmites australis in the tidal marshes of the Hudson River.In W. C. Nieder and J. R. Waldman (eds.), Final Reports of the Tibor T. Polgar Fellowship Program, 1996. Hudson River Foundation, New York.

    Google Scholar 

Sources of Unpublished Materials

  • Montalto, F. Personal Communication. Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall, Ithaca, New York 14850.

  • Widjescog, L. Personal Communication. Regional Superintendant, New Jersey Division of Fish and Wildlife, 8747 Ferry Road, Millville, New Jersey 08332.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bart, D., Hartman, J.M. The role of large rhizome dispersal and low salinity windows in the establishment of common reed,Phragmites australis, in salt marshes: New links to human activities. Estuaries 26, 436–443 (2003). https://doi.org/10.1007/BF02823720

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823720

Keywords

Navigation