Skip to main content
Log in

Determinants of expansion forPhragmites australis, common reed, in natural and impacted coastal marshes

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Able, K. W., S. M. Hagan, andS. A. Brown. 2003. Mechanisms of marsh habitat alteration due toPhragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment forPhragmites removal.Estuaries 26:484–494.

    Article  Google Scholar 

  • Anisfeld, S. C., M. J. Tobin, andG. Benoit. 1999. Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound.Estuaries 22:231–244.

    Article  CAS  Google Scholar 

  • Bart, D. 1997. The use of local knowledge in understanding ecological change: A study of salt hay farmers' knowledge ofPhragmites australis invasion. Master's Thesis, Rutgers the State University of New Jersey. New Brunswick, New Jersey.

    Google Scholar 

  • Bart, D. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.Oikos 89:59–69.

    Article  Google Scholar 

  • Bart, D. andJ. M. Hartman. 2003. The role of large rhizome dispersal and low salinity windows in the establishment of common reed,Phragmites australis, in salt marshes: New links to human activities.Estuaries 26:436–443.

    Article  Google Scholar 

  • Benoit, L. K. andR. A. Askins. 1999. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes.Wetlands 19:194–208.

    Article  Google Scholar 

  • Bertness, M. D. 1985. Fiddler crab regulation ofSpartina alterniflora production in a New England salt marsh.Ecology 69: 1042–1055.

    Article  Google Scholar 

  • Bertness, M. D. 1991. Interspecific interactions among high marsh perennials in a New England salt marsh.Ecology 72: 125–137.

    Article  Google Scholar 

  • Bertness, M. D. andA. M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community.Ecological Monographs 57:129–147.

    Article  Google Scholar 

  • Bertness, M. D., P. J. Ewanchuk, andB. R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes.Proceedings of the National Academy of Sciences 99:1395–1398.

    Article  CAS  Google Scholar 

  • Bertness, M. D. andS. D. Hacker. 1994. Physical stress and positive interactions among marsh plants.American Naturalist 144:363–372.

    Article  Google Scholar 

  • Bertness, M. D. andS. M. Yeh. 1994. Cooperative and competitive interactions in the recruitment of marsh elders.Ecology 75:2416–2429.

    Article  Google Scholar 

  • Burdick, D. M., R. Buschbaum, andE. Holt. 2001. Variation in soil salinity associated with expansion ofPhragmites australis in salt marshes.Environmental and Experimental Botany 46:247–261.

    Article  CAS  Google Scholar 

  • Chambers, R. M. 1997. Porewater chemistry associated withPhragmites andSpartina in a Connecticut tidal marsh.Wetlands 17:360–367.

    Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Dormann, C. F., R. Van Der Wal, andJ. P. Bakker. 2000. Competition and herbivory during salt marsh succession: The importance of forb growth strategy.Journal of Ecology 88:571–583.

    Article  Google Scholar 

  • Ellison, A. M. 1987. Effects of competition, disturbance, and herbivory onSalicornia europaea.Ecology 68:576–586.

    Article  Google Scholar 

  • Emery, N. C., P. J. Ewanchuk, andM. D. Bertness. 2001. Competition and salt-marsh plant zonation: Stress tolerators may be dominant competitors.Ecology 82:2471–2485.

    Google Scholar 

  • Findlay, S. E. G., S. Dye, andK. A. Kuehn. 2002. Microbial growth and nitrogen retention in litter ofPhragmites australis compared toTypha angustifolia.Wetlands 22:616–625.

    Article  Google Scholar 

  • Gallagher, J. L. andR. W. Howarth. 1987. Seasonal differences inSpartina recoverable reserves in the Great Sippewissett Marsh in Massachusetts.Estuarine, Coastal and Shelf Science 25:313–319.

    Article  Google Scholar 

  • Grace, J. B. 1987. The impact of preemption on the zonation of twoTypha species along lakeshores.Ecological Monographs 57:283–303.

    Article  Google Scholar 

  • Grime, J. P. 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester, U.K.

    Google Scholar 

  • Hacker, S. D. andM. D. Bertness. 1999. Experimental evidence for factors maintaining plant species diversity in a New England salt marsh.Ecology 80:2064–2073.

    Google Scholar 

  • Hara, T., J. Van Der Toorn, andJ. H. Mook. 1993. Growth dynamics and size structure of shoots ofPhragmites australis, a clonal plant.Journal of Ecology 81:47–60.

    Article  Google Scholar 

  • Hartman, J. M. 1988. Recolonization of small disturbance patches in a New England salt marsh.American Journal of Botany 75:1625–1631.

    Article  Google Scholar 

  • Haslam, S. M. 1971. The development and establishment of young plants ofPhragmites communis Trin.Annals of Botany 35: 1059–1072.

    Google Scholar 

  • Havens, K.J., H. Berquist, andW. I. Priest, III. 2003. Common reed grass,Phragmites australis, expansion into constructed wetlands: Are we mortgaging our wetland future?Estuaries 26: 417–422.

    Article  Google Scholar 

  • Havens, K. J., W. I. Priest, III, andH. Berquist. 1997. Investigation and long-term monitoring ofPhragmites australis within Virginia's constructed wetland sites.Environmental Management 21:599–605.

    Article  Google Scholar 

  • Hellings, S. E. andJ. L. Gallagher. 1992. The effects of salinity and flooding onPhragmites australis.Journal of Applied Ecology 29:41–49.

    Article  Google Scholar 

  • Helsel, D. R. andR. M. Hirsch. 1997. Statistical Methods in Water Resources. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Hester, M. W., K. L. McKee, D. M. Burdick, M. S. Koch, K. S. Flynn, S. Patterson, andI. A. Mendelssohn. 1994. Clonal integration inSpartina patens across a nitrogen and salinity gradient.Canadian Journal of Botany 72:767–770.

    Article  Google Scholar 

  • Huckle, J. M., J. A. Potter, R. H. Marrs. 2000. Influence of environmental factors on the growth and interactions between salt marsh plants: Effects of salinity, sediment and waterlogging.Journal of Ecology 88:492–505.

    Article  Google Scholar 

  • Jaworski, N. A., R. W. Howarth, andL. J. Hetling. 1997. Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States.Environmental Science and Technology 31:1995–2004.

    Article  CAS  Google Scholar 

  • Keddy, P. A. 1989. Competition. Chapman and Hall, London, U.K.

    Google Scholar 

  • Keddy, P. A., L. Twolan-Strutt, andI. C. Wisheu. 1994. Competitive effect and response rankings in 20 wetland plants: Are they consistent across three environments?.Journal of Ecology 82:635–643.

    Article  Google Scholar 

  • Levine, J. M., J. S. Brewer, andM. D. Bertness. 1998. Nutrients, competition, and plant zonation in a New England salt marsh.Journal of Ecology 86:285–292.

    Article  Google Scholar 

  • Lissner, J. andH.-H. Schierup. 1997. Effects of salinity on the growth ofPhragmites australis.Aquatic Botany 55:247–260.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A. andD. M. Burdick. 1988. The relationship of soil parameters and root metabolism to primary production in periodically inundated soils, p. 398–428.In D. Hook, W. H. McKee, Jr., J. Gregory, V. G. Burell, Jr., M. R. DeVoe, R. E. Sojka, S. Gilbert, R. Banks, L. H. Stolzy, C. Brooks, T. D. Mathews, and T. H. Shear (eds.), Ecology and Management of Wetlands, Volume 1: Ecology of Wetlands. Croom Helm, Breckingham, U.K..

    Google Scholar 

  • Mendelssohn, I. A. andJ. T. Morris. 2000. Eco-physiological controls on the productivity ofSpartina alterniflora Loisel, p. 59–80.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic, Boston, Massachusetts.

    Google Scholar 

  • Meyerson, L. 2000. Ecosystem-level effects of invasive species: APhragmites case study in two freshwater tidal marsh ecosystems on the Connecticut River. Ph.D. Dissertation. Yale University, New Haven, Connecticut.

    Google Scholar 

  • McKee, K. L., I. A. Mendelssohn, andD. M. Burdick. 1989. Effect of long-term flooding on root metabolic response in five freshwater marsh plant species.Canadian Journal of Botany 67:3446–3452.

    CAS  Google Scholar 

  • Minchinton, T. E. 2002. Disturbance by wrack facilitates spread ofPhragmites australis in a coastal marsh.Journal of Experimental Marine Biology and Ecology 281:89–107.

    Article  Google Scholar 

  • Mitsch, W. J. andJ. G. Gosselink. 2000. Wetlands. Wiley, New York.

    Google Scholar 

  • Odum, W. E., T. J. Smith, III,J. K. Hoover, andC. C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States East Coast: A community profile. FWS/OBS-87/17. U.S. Fish and Wildlife Service, Washington, D.C.

    Google Scholar 

  • Orson, R., R.S. Warren, andW. A. Niering. 1987. Development of a southern New England drowned valley tidal marsh.Estuaries 10:6–27.

    Article  Google Scholar 

  • Pennings, S. C. andR. M. Callaway. 1992. Salt marsh zonation: The relative importance of competition and physical factors.Ecology 73:681–690.

    Article  Google Scholar 

  • Pennings, S. C., L. E. Stanton, andJ. S. Brewer. 2002. Nutrient effects on the composition of salt marsh plant communities along the southern Atlantic and Gulf Coasts of the United States.Estuaries 25:1164–1173.

    Article  Google Scholar 

  • Rand, T. A. 2000. Seed dispersal, habitat suitability and the distribution of halophytes across a salt marsh tidal gradient.Journal of Ecology 88:608–621.

    Article  Google Scholar 

  • Rice, D., J. Rooth, andJ. C. Stevenson. 2000. Colonization and expansion ofPhragmites australis in upper Chesapeake Bay tidal marshes.Wetlands 20:280–299.

    Article  Google Scholar 

  • Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation changes in response to tidal restriction.Environmental Management 8:140–150.

    Article  Google Scholar 

  • Rooth, J. E., J. C. Stevenson, andJ. C. Cornwell. 2003. The influence of 5 and 20-yr oldPhragmites populations on rates of accretion in an oligohaline tidal marsh of Chesapeake Bay.Estuaries 26:475–483.

    Article  Google Scholar 

  • Rozsa, R. 1995. Tidal restoration in Connecticut, p. 51–65.In G. D. Dreyer and W. A. Niering (eds.), Tidal Marshes of Long Island Sound: Ecology, History and Restoration, Bulletin no. 34. The Connecticut College Arboretum, New London, Connecticut.

    Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings of the National Academy of Sciences 99:2445–2449.

    Article  CAS  Google Scholar 

  • Saltzman, A. G. andN. A. Parker. 1985. Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment.Oecologia 65:273–277.

    Article  Google Scholar 

  • SASInstitute. 1997. JMP Statistics Software Version 3.1. SAS Institute, Inc., Cary, North Carolina.

    Google Scholar 

  • Schat, M. 1984. A comparative ecophysiologic study of the effects of waterlogging and submergence on dune slack plants: Growth, survival and mineral nutrition in sand culture experiments.Oecologia 62:279–286.

    Article  Google Scholar 

  • Silliman, B. R. andJ. C. Zieman. 2001. Top-down control ofSpartina alterniflora production by periwinkle grazing in a Virginia salt marsh.Ecology 82:2830–2845.

    Google Scholar 

  • Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Van Der Wal, R., M. Egas, A. Van Der Veen, andJ. Bakker. 2000. Effects of resource competition and herbivory on plant performance along a natural productivity gradient.Journal of Ecology 88:317–330.

    Article  Google Scholar 

  • Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: Belowground biomass.Limnology and Oceanography 21:245–252.

    Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, andR. A. Fertek. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower connecticut River.Estuaries 24: 90–107.

    Article  Google Scholar 

  • Windham, L. andR. G. Lathrop, Jr. 1999. Effects ofPhragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–935.

    Article  Google Scholar 

  • Ziska, L. H. 2001. Changes in competitive ability between a C4 crop and a C3 weed with elevated carbon dioxide.Weed Science 49:622–627.

    Article  CAS  Google Scholar 

Sources of Unpublished Materials

  • Linder, C. Personal Communication. Habitat Restoration Center, Office of Habitat Conservation, National Marine and Fisheries Service, 1315 East West Highway, Silver Spring, Maryland 20910.

  • U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. 2003. January. Fire Effects Information System, [Online]. Available: http://www.fs.fed.us/database/feis/ [2/10/2003].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Burdick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burdick, D.M., Konisky, R.A. Determinants of expansion forPhragmites australis, common reed, in natural and impacted coastal marshes. Estuaries 26, 407–416 (2003). https://doi.org/10.1007/BF02823717

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823717

Keywords

Navigation