Skip to main content
Log in

Stable integration and expression of β-glucuronidase and NPT II genes in mango somatic embryos

  • Regular Papers
  • Published:
In Vitro – Plant Aims and scope Submit manuscript

Summary

Somatic proembryos of mango (Mangifera indica L. cv. Hindi) were co-cultivated withAgrobacterium tumefaciens strain A208 harboring pTiT37-Se::pMON 9749 (9749 ASE). Transformed somatic proembryos capable of growing on selection medium containing 200 μg/ml kanamycin produced the characteristic indigo blue precipitate in the presence of 5-bromo-4-chloro-3-glucuronic acid. These proembryos were chimeral consisting of transformed (blue) and nontransformed (yellow/white) cells. A stepwise selection strategy was found necessary to eliminate chimeras. a) Initial screening at 200 μg/ml kanamycin to enable growth of transformed cells, b) further screening at 400 μg/ml kanamycin to reduce chimeras, and c) recovery of pure transformed clones of proembryos in liquid selection medium with 100 μg/ml kanamycin. The integration of the NPT II and GUS genes into mango genome was confirmed by Southern hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • De Block, M. Factors influencing the tissue culture and theAgrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol. 93:1110–1116; 1990.

    PubMed  Google Scholar 

  • Dewald, S. G.; Litz, R. E.; Moore, G. A. Optimizing somatic embryo production in mango. J. Am. Soc. Hortic. Sci. 114:712–716; 1989a.

    Google Scholar 

  • Dewald, S. G.; Litz, R. E.; Moore, G. A. Maturation and germination of mango somatic embryos. J. Am. Soc. Hortic. Sci. 114:837–841; 1989b.

    Google Scholar 

  • Feldman, K. A.; Marks, M. D.Agrobacterium mediated transformation of germinating seeds ofArabidopsis thaliana: a nontissue culture approach. Mol. & Gen. Genet. 208:1–9; 1987.

    Article  Google Scholar 

  • Fillatti, J. J.; Sellmer, J.; McCown, B., et al.Agrobacterium-mediated transformation and regeneration ofPopulus. Mol. & Gen. Genet. 206:192–199; 1987.

    Article  CAS  Google Scholar 

  • Fitch, M. M.; Manshardt, R. M.; Gonsalves, D., et al. Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9:189–194; 1990.

    CAS  Google Scholar 

  • Food and Agricultural Organization. Production Yearbook 41. Rome: Food and Agricultural Organization of the United Nations; 1987.

    Google Scholar 

  • Fraley, R. T.; Rogers, S. G.; Horsch, R. B., et al. The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technology 3:629–635; 1985.

    Article  CAS  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Plant cell cultures. I. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50:150–158; 1968.

    Article  Google Scholar 

  • Graham, J.; McNicol, R. J.; Kumar, A. Use of the GUS gene as a selectable marker forAgrobacterium-mediated transformation ofRubus. Plant Cell Tissue Organ Cult. 20:35–39; 1990.

    Article  CAS  Google Scholar 

  • Hammerschlag, F. A.; Owens, L. D.; Smigoki, A. C.Agrobacterium-mediated transformation of peach cells derived from mature plants that were propagated in vitro. J. Am. Soc. Hortic. Sci. 114:508–510; 1989.

    Google Scholar 

  • Hidaka, T.; Omura, M.; Ugaki, M., et al.Agrobacterium-mediated transformation and regeneration ofCitrus spp. from suspension cells. Jpn J. Breed. 40:199–207; 1990.

    Google Scholar 

  • James, D. J.; Passey, A. J.; Barbara, D. J., et al. Genetic transformation of apple (Malus pumila Mill) using a disarmed T-binary vector. Plant Cell Rep. 7:658–661; 1989.

    CAS  Google Scholar 

  • Jefferson, R. A. Assaying chimeric genes in plants: the GUS gene fusion systems. Plant Mol. Biol. 5:387–405; 1987.

    CAS  Google Scholar 

  • Litz, R. E. In vitro somatic embryogenesis from nucellar callus of monoembryonic mango. HortScience 19:715–717; 1984.

    Google Scholar 

  • Litz, R. E.; Knight, R. K.; Gazit, S. Somatic embryos from cultured ovules ofMangifera indica L. Plant Cell Rep. 1:264–266; 1982.

    Article  Google Scholar 

  • Litz, R. E.; Mathews, H.; Bharathan, N., et al. Transformation of somatic embryos of mango. Seventh International Congress on Plant Tissue and Cell Culture. Amsterdam. Abstract 67; 1990.

  • Maniatis, T.; Fritsch, E. F.; Sambrook, J. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Press: 1987.

    Google Scholar 

  • Mathews, H.; Bharathan, N.; Litz, R. E., et al. Transgenic plants of mustardBrassica juncea (L.) Czern and Coss. Plant Sci. 72:245–252; 1990.

    Article  CAS  Google Scholar 

  • Mathews, H.; Litz, R. E. Kanamycin sensitivity of mango somatic embryos. HortScience 25:965–966; 1990.

    CAS  Google Scholar 

  • Mathews, H.; Litz, R. E. Mango. In: Hammerschlag, F. A.; Litz, R. E., eds. Biotechnology of perennial fruit crop species. Wallingford: CAB International; 1992: 433–448.

    Google Scholar 

  • McCabe, D. E.; Sain, W. F.; Martinell, B. J., et al. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926; 1988.

    Article  Google Scholar 

  • McCown, B. H.; McCabe, D. E.; Russell, D. R., et al. Stable transformation ofPopulus and incorporation of pest resistance by electrical discharge particle acceleration. Plant Cell Rep. 9:590–594; 1991.

    Article  CAS  Google Scholar 

  • McGranahan, G. H.; Leslie, C. A.; Uratsu, S. L., et al. Improved efficiency of the walnut somatic embryo gene transfer system. Plant Cell Rep. 8:512–516; 1990.

    Article  CAS  Google Scholar 

  • McGranahan, G. H.; Leslie, C. A.; Uratsu, S. L., et al.Agrobacterium mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology 6:800–804; 1988.

    Article  CAS  Google Scholar 

  • Miller, J. H. Experiments in molecular genetics, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1972:466.

    Google Scholar 

  • Moore, L. W.; Anderson, A.; Kado, C. I. Gram negative bacteria. In: Schadd, N. W., ed. Laboratory guide for identification of plant pathogenic bacteria. St. Paul, MN: Bacteriology Committee of American Phytopathological Society; 1980.

    Google Scholar 

  • Mullins, M. G.; Tang, F. C. A.; Facciotti, D.Agrobacterium-mediated genetic transformation of grapevines: transgenic plants ofVitis rupestris scheele and buds ofVitis vinifera L. Bio/Technology 8:1041–1045; 1990.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Pang, S. Z.; Sanford, J. C.Agrobacterium-mediated gene transfer in papaya. J. am. Soc. Hortic. Sci. 113:287–291; 1988.

    CAS  Google Scholar 

  • Rogers, S. O.; Bendich, A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5:69–76; 1985.

    Article  CAS  Google Scholar 

  • Wilde, H. D.; Meagher, R. B.; Merkle, S. A. Expression of foreign genes in transgenic yellow-poplar. Plant Physiol. 98:114–120; 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathews, H., Litz, R.E., Wilde, H.D. et al. Stable integration and expression of β-glucuronidase and NPT II genes in mango somatic embryos. In Vitro Cell.Dev.Biol.–Plant 28, 172–178 (1992). https://doi.org/10.1007/BF02823312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823312

Key words

Navigation