Skip to main content
Log in

Production of acid and alkaline phosphatases byMyxococcus coralloides

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Acid and alkaline phosphatase ofMyxococcus coralloides were examined during vegetative growth in a liquid medium. Two extracellular phosphatases and two cell-bound phosphatases, acid and alkaline in both cases, were produced. The phosphatase production was unaltered by the presence of high concentrations of inorganic phosphate. Both enzymes were produced constitutively. These two hydrolases were released into the growth medium during the exponential growth phase (approximately 10% of total activity). The production of these enzymes was modified by the presence of organic acids and metal ions in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames B.N.: Assay of inorganic phosphate, total phosphate and phosphatases, pp. 115–118 inMethods in Enzymology, Vol. VIII (E.F. Neufeld, V. Ginsburg, eds.). Academic Press, New York-London 1966.

    Google Scholar 

  • Arias J.M., Montoya E.: Dispersed growth and cell lysis inMyxococcus coralloides.Microb. Lett.5, 81–84 (1978).

    Google Scholar 

  • Arias J. M., Fernández-Vivas A., Montoya E.: Evidence for an activating substance related to autolysis inMyxococcus coralloides.Arch. Microbiol.134, 164–166 (1983).

    Article  Google Scholar 

  • Arnold W.N., Garrison R.G.: An Fe3+-activated acid phosphatase inSaccharomyces rouxii.J. Biol. Chem.254, 4919–4924 (1979).

    PubMed  CAS  Google Scholar 

  • Arnold W.N., Evans B.J., Denniston M.L.: Effects of metal-depleted media on the growth and morphology ofSaccharomyces rouxii and on the status of periplasmic acid phosphatase.J. Gen. Microbiol.129, 2351–2358 (1983).

    CAS  Google Scholar 

  • Coleman G.: Pleiotropic compensation in the regulation of extracellular protein formation by a low α-toxin producing variant ofStaphylococcus aureus (WOOD 46).J. Gen. Microbiol.122, 11–15 (1981).

    PubMed  CAS  Google Scholar 

  • Cheng K.J., Costerton J.W.: Localization of alkaline phosphatase in three gram-negative rumen bacteria.J. Bacteriol.116, 424–440 (1973).

    PubMed  CAS  Google Scholar 

  • Cheng K.J., Ingram J.M., Costerton J.W.: Alkaline phosphatase localization and sphaeroplast formation ofPseudomonas aeruginosa.Can. J. Microbiol.16, 1319–1324 (1970).

    PubMed  CAS  Google Scholar 

  • Done J., Shorey C.O., Lake J.P., Pollak J.K.: The cytochemical localization of alkaline phosphatase inEscherichia coli.Biochem. J.69, 27c-28c (1965).

    Google Scholar 

  • Fernández-Vivas A., Arias J.M., Montoya E.: Autolysis inMyxococcus coralloides D.FEMS Microbiol. Lett.20, 97–101 (1983).

    Article  Google Scholar 

  • Franker C.K., Mcgee M.P., Rezzo T.P.: Alkaline phosphatase activity in a strain ofBacterionema matruchotii.J. Dental Res.58, 1705–1708 (1978).

    Google Scholar 

  • González F., Arias J.M., Montoya E.: Phosphatases activities in the life cycle ofMyxococcus coralloides D.J. Gen. Microbiol.133, 2327–2332 (1987).

    Google Scholar 

  • Gottesman S.: Bacterial regulation: Global regulatory networks.Ann. Rev. Gen.18, 415–441 (1984).

    Article  CAS  Google Scholar 

  • Hochberg M.L., Sargent M.L.: Regulation of repressible alkaline phosphatase by organic acids and metal ions inNeurospora crassa.Can. J. Microbiol.19, 1487–1492 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Mau-Haui K., Blumenthal H.J.: Absence of phosphatase repression by inorganic phosphate in some microorganism.Nature190, 29–31 (1961).

    Article  Google Scholar 

  • Nesmeyanova M.A., Motlokh O.B., Kolot M.N., Kulaev I.S.: Multiple forms of alkaline phosphatase fromEscherichia coli cells with repressed and derepressed biosynthesis of the enzyme.J. Bacteriol.146, 453–459 (1981).

    PubMed  CAS  Google Scholar 

  • Nicaud J.M., Breton A., Younes G., Guespin-Michel J.: Mutants ofMycococcus xanthus impaired in protein secretion: an approach to study of a secretory mechanism.Appl. Microbiol. Biotechnol.20, 344–350 (1984).

    Article  CAS  Google Scholar 

  • Poirier T.P., Holt S.C.: Acid and alkaline phosphatases ofCapnocytophaga species: production and cytological localization of the enzymes.Can. J. Microbiol.29, 1350–1360 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg E., Varon M.: Antibiotics and lytic enzymes, pp. 109–127 inMyxobacteria: Development and Cell Interactions (E. Rosenberg, ed.). Springer Verlag, New York 1984.

    Google Scholar 

  • Rosenberg E., Keller K.H., Dworjin M.: Cell density-dependent growth ofMycococcus xanthus on casein.J. Bacteriol.155, 770–779 (1977).

    Google Scholar 

  • Sedmak J., Grossberg S.: A rapid, sensitive and versatile assay for protein using coomassie brilliant blue G250.Anal. Biochem.79, 544–552 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Shah D.B., Blobel H.: Repressible alkaline phosphatase ofStaphylococcus aureus.J. Bacteriol.94, 780–781 (1967).

    PubMed  CAS  Google Scholar 

  • Shimkets L.J.: Nutrition, metabolism and the initiation of development, pp. 91–107 inMyxobacteria: Development and Cell Interactions (E. Rosenberg, ed.). Springer-Verlag, New York 1984.

    Google Scholar 

  • Spencer D.B., Chai-Pao C., Hulett F.M.: Effect of cobalt on synthesis and activation ofBacillus licheniformis.J. Bacteriol.145, 926–933 (1981).

    PubMed  CAS  Google Scholar 

  • Von Tigerstrom R.G.: Production of two phosphatases byLysobacter enzymogenes and purification and characterization of the extracellular enzymes.Appl. Environ. Microbiol.47, 693–698 (1984).

    Google Scholar 

  • Wilkins S.A.: Physiological factors in the regulation of alkaline phosphatase synthesis inEscherichia coli.J. Bacteriol.110, 616–623 (1972).

    PubMed  CAS  Google Scholar 

  • Willsky G.R., Malamy M.H.: Effect of arsenate on inorganic phosphate transport inEscherichia coli.J. Bacteriol.144, 366–374 (1980).

    PubMed  CAS  Google Scholar 

  • Willsky G.R., Bennett R.L., Malamy M.H.: Inorganic phosphate transport inEscherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation.J. Bacteriol.113, 529–539 (1973).

    PubMed  CAS  Google Scholar 

  • Witkin S., Rosenberg E.: Induction of morphogenesis by methionine starvation inMycococcus xanthus: Polyamine control.J. Bacteriol.103, 641–649 (1970).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, F., Munoz, J., Arias, J.M. et al. Production of acid and alkaline phosphatases byMyxococcus coralloides . Folia Microbiol 34, 185–194 (1989). https://doi.org/10.1007/BF02821291

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821291

Keywords

Navigation