Skip to main content
Log in

Photoheterotrophic and chemoheterotrophic dinitrogen fixation and nitrate utilization by the cyanobacteriumAnabaena torulosa

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Anabaena torulosa exhibited fructose-dependent growth, heterocyst differentiation and N2 fixation in nitrate-free (diazotrophic) cultures in photoheterotrophic and chemoheterotrophic conditions. The incorporation of nitrate into such cultures inhibited the formation of heterocysts and N2 fixation. The rate of NO 3 uptake byA. torulosa in photoautotrophic, photoheterotrophic and chemoheterotrophic conditions was similar but it increased by 100% in phototrophic conditions. The activity of glucose-6-phosphate dehydrogenase was found to be maximum in phototrophic and photoheterotrophic conditions. Ferredoxin-NADP+ reductase, nitrate reductase and glutamate-ammonia ligase activities suggest that nitrate utilization takes place in nonphotosynthetic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen M.B., Arnon D.I.: Studies on nitrogen fixing blue-green algae. I. Growth and nitrogen fixation byAnabaena cylindrica Lemm.Plant Physiol. 30, 366–372 (1955).

    PubMed  CAS  Google Scholar 

  • Apte S.K., Rowell P., Stewart W.D.P.: Electron donation to ferredoxin in heterocysts of the N2-fixing algaAnabaena cylindrica.Proc. Roy. Soc. (London) B 200, 1–25 (1978).

    CAS  Google Scholar 

  • Bagchi S.N., Palod A., Chauhan V.S.: Photosynthetic control of nitrate metabolism inPhormidium uncinatum.Current Microbiol. 19, 183–188 (1989).

    Article  CAS  Google Scholar 

  • Bagchi S.N., Chauhan V.S., Palod A.: Heterotrophy and nitrate metabolism in a cyanobacteriumPhormidium uncinatum.Current Microbiol. 21, 53–57 (1990).

    Article  CAS  Google Scholar 

  • Böhme H.: Regulation of electron flow in a cell free system from heterocysts ofAnabaena variabilis.Biochim. Biophys. Acta 891, 121–128 (1987).

    Article  Google Scholar 

  • Böhme H., Schrautemeier B.: Electron donation to nitrogenase in a cell-free system from heterocysts ofAnabaena variabilis.Biochim. Biophys. Acta 891, 115–120 (1987).

    Article  Google Scholar 

  • Candau P., Manzano C., Losada M.: Bio-conversion of light energy into chemical energy through reduction with water of nitrate to ammonia.Nature 262 715–717 (1976).

    Article  CAS  Google Scholar 

  • Cawse P.A.: The determination of nitrate in soil solutions by ultraviolet spectrophotometry.Analyst 92, 311–315 (1967).

    Article  CAS  Google Scholar 

  • Codd G.A., Okabe K., Stewart W.D.P.: Cellular compartmentation of photosynthetic and photorespiratory enzymes in the heterocystous cyanobacteriumAnabaena cylindrica.Arch. Microbiol. 124, 149–154 (1980).

    Article  CAS  Google Scholar 

  • Cossar J.D., Rowell P., Stewart W.D.P.: Thioredoxin as a modulator of glucose-6-phosphate dehydrogenase in a N2-fixing cyanobacterium.J. Gen. Microbiol. 130, 991–998 (1984).

    CAS  Google Scholar 

  • Flores E., Guerrero M.G., Losada M.: Photosynthetic nature of nitrate uptake and reduction in cyanobacteriumAnacystis nidulans.Biochim. Biophys. Acta 722, 408–416 (1983a).

    Article  CAS  Google Scholar 

  • Flores E., Ramos J.L., Herrero A., Guerrero M.G.: Nitrate assimilation by cyanobacteria, pp. 366–387 in G. Papageorgiou, L. Packer (Eds):Photosynthetic Prokaryotes: Cell Differentiation and Function. Elsevier Biomedical, New York, 1983b.

    Google Scholar 

  • Gallon J.R., Abul Hashem M., Chaplin A.E.: Nitrogen fixation byOscillatoria spp. under autotrophic and photoheterotrophic conditions.J. Gen. Microbiol. 137, 31–39 (1991).

    CAS  Google Scholar 

  • Haselkorn R.: Heterocysts.Ann. Rev. Plant. Physiol. 29, 319–344 (1978).

    Article  CAS  Google Scholar 

  • Herrero A., Flores E., Guerrero M.G.: Regulation of nitrate reductase levels in the cyanobacteriaAnacystis nidulans Anabaena sp. strain 7119, andNostoc sp. strain 6719.J. Bacteriol. 145, 175–180 (1981).

    PubMed  CAS  Google Scholar 

  • Hewitt B.R.: Spectrophotometric determination of protein in alkaline solutions.Nature 182, 1246 (1959).

    Google Scholar 

  • Holm G.: Chlorophyll mutations in barley.Acta Agric. Scand. 4, 457–471 (1964).

    Article  Google Scholar 

  • Karni L., Tel-or E.: N2-fixation enhancementin vivo by Krebs cycle intermediates and sugars in the cyanobacteriumNostoc muscorum, p. 60 inProc. 5th Internat, Symp. Photosynthetic Prokaryotes. Grindelweld (Switzerland) 1985.

  • Khamees H.S., Gallon J.R., Chaplin A.E.: The pattern of acetylene reduction by cyanobacteria grown under alternating light and darkness.Brit. Phycol. J. 22, 55–60 (1987).

    Article  Google Scholar 

  • Kumar A.P., Singh D.T., Singh H.N.: Characterization of metronidazole resistant (Mtn-R) mutant strain ofNostoc muscorum affected in ammonium regulation of heterocyst formation and uptake hydrogenase activity.FEMS Microbiol. Lett. 49, 261–265 (1988).

    Article  CAS  Google Scholar 

  • Lockau W., Peterson R.B., Wolk C.P., Burris R.H.: Modes of reduction of nitrogenase in heterocysts isolated fromAnabaena species.Biochim. Biophys. Acta 502, 98–308 (1978).

    Google Scholar 

  • Maryan P.S., Eady R.R., Chaplin A.E., Gallon J.R.: Nitrogen fixation byGloeothece sp. PCC 6090: respiration and not photosynthesis supports nitrogenase activity in the light.J. Gen. Microbiol. 132, 789–796 (1986).

    CAS  Google Scholar 

  • Neuer G., Bothe H.: The pyruvate: ferredoxin oxidoreductase in heterocysts of the cyanobacteriumAnabaena cylindrica.Biochim. Biophys. Acta 716, 358–365 (1982).

    PubMed  CAS  Google Scholar 

  • Neuer G., Papen H., Bothe H.: Heterocyst biochemistry and differentiation, pp. 219–242 in G.C. Papageorgiou, L. Packer (Eds):Photosynthetic Prokaryotes: Cell Differentiation and Function. Elsevier Biomedical, New York 1983.

    Google Scholar 

  • Nicholas D.J.D., Nason A.: Determination of nitrate and nitrite, pp. 981–984 in S.P. Colowick, N.O. Kaplan (Eds):Methods in Enzymology. Academic Press, New York 1957.

    Google Scholar 

  • Papen H., Neuer G., Refaian M., Bothe H.: The isocitrate dehydrogenase from cyanobacteria.Arch. Microbiol. 134, 73–79 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Pearce J.R., Carr N.G.: The incorporation and metabolism of glucose byAnabaena variabilis.J. Gen. Microbiol. 54, 451–462 (1969).

    CAS  Google Scholar 

  • Rosen A., Arad H., Schonfeld M., Tel-or E.: Fructose supports glycogen accumulation, heterocyst differentiation, nitrogen fixation and growth of the isolated cyanobiontAnabaena azollae.Arch. Microbiol. 145, 187–190 (1986).

    Article  Google Scholar 

  • Rowell P., Reed R.H., Hawkesford M.J., Ernst A., Stewart W.D.P.: Some aspects of the regulation of nitrogenase activity in the cyanobacterium,Anabaena variabilis, pp. 186–189 in A.H. Gibson, W.E. Newton, (Eds):Current Perspectives in Nitrogen Fixation. Australian Academy of Sciences, Canberra 1981.

    Google Scholar 

  • Sarma T.A., Khattar J.I.S.: Akinete differentiation in phototrophic, photoheterotrophic and chemoheterotrophic conditions inAnabaena torulosa.Folia Microbiol. 38, 335–340 (1993).

    Article  CAS  Google Scholar 

  • Sarma T.A., Swarn Kanta: Biochemical studies on sporulation in blue-green algae. I. Glycogen accumulation.Z. Allg. Mikrobiol. 19, 571–575 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Schrautemeier B., Böhme H., Böger P.:In vitro studies on pathway and regulation of electron transport in nitrogenase with cell-free extracts from heterocysts ofAnabaena variabilis.Arch. Microbiol. 137, 14–20 (1984).

    Article  CAS  Google Scholar 

  • Shapiro B.M., Stadtman E.R.: Glutamine synthetase ofEscherichia coli, pp. 914–922 in H. Tabor, C.W. Tabor (Eds):Methods in Enzymology, Vol. XVII A. Academic Press, New York 1970.

    Google Scholar 

  • Smith A.J.: Modes of cyanobacterial carbon metabolism, pp. 47–85 in N.G. Carr, B.A. Whitton (Eds):The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford 1982.

    Google Scholar 

  • Stewart W.D.P.: Some aspects of structure and function in N2 fixing cyanobacteria.Ann. Rev. Microbiol. 34, 497–536 (1980).

    Article  CAS  Google Scholar 

  • Stewart W.D.P., Fitzgerald G.P., Burris R.H.: Acetylene reduction by nitrogen fixing blue-green algae.Arch. Microbiol. 62, 336–348 (1968).

    CAS  Google Scholar 

  • Tel-or E., Stewart W.D.P.: Photosynthetic electron transport, ATP synthesis and nitrogenase activity in isolated heterocysts ofAnabaena cylindrica.Biochim. Biophys. Acta 423, 189–195 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Winkenbach F., Wolk C.P.: Activities of the enzymes of the oxidative and the reductive pentose phosphate pathways in heterocysts of a blue-green alga.Plant Physiol. (Lancaster)52, 480–483 (1973).

    CAS  Google Scholar 

  • Wolk C.P.: Heterocysts, pp. 359–386 in N.G. Carr, B.A. Whitton (Eds):The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarma, T.A., Khattar, J.I.S. Photoheterotrophic and chemoheterotrophic dinitrogen fixation and nitrate utilization by the cyanobacteriumAnabaena torulosa . Folia Microbiol 39, 404–408 (1994). https://doi.org/10.1007/BF02814447

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814447

Keywords

Navigation