Skip to main content
Log in

Boron tolerable intake

Re-evaluation of Toxicokinetics for Data-Derived Uncertainty Factors

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Boron, which is ubiquitous in the environment, causes developmental and reproductive effects in experimental animals. This observation has led to efforts to establish a Tolerable Intake value for boron. Although risk assessors agree on the use of fetal weight decreases observed in rats as an appropriate critical effect, consensus on the adequacy of toxicokinetic data as a basis for replacement of default uncertainty factors remains to be reached. A critical analysis of the existing data on boron toxicokinetics was conducted to clarify the appropriateness of replacing default uncertainty factors (10-fold for interspecies differences and 10-fold for intraspecies differences) with data-derived values.

The default uncertainty factor for variability in response from animals to humans of 10-fold (default values of 4-fold for kinetics and 2.5-fold for dynamics) was recommended, since clearance of boron is 3-to 4-fold higher in rats than in humans and data on dynamic differences—in order to modify the default value—are unavailable. A data-derived adjustment of 6-fold (1.8 for kinetics and 3.1 for dynamics) rather than the default uncertainty factor of 10-fold was considered appropriate for intrahuman variability, based on variability in glomerular filtration rate during pregnancy in humans and the lack of available data on dynamic differences. Additional studies to investigate the toxicokinetics of boron in rats would be useful to provide a stronger basis for replacement of default uncertainty factors for interspecies variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. S. Environmental Protection Agency, Integrated Risk Information System (IRIS) Online, National Center for Environmental Assessment, Cincinnati, OH (1998).

    Google Scholar 

  2. World Health Organization, Environmental Health Criteria for Boron—Draft, WHO, Geneva (1997).

    Google Scholar 

  3. World Health Organization, Environmental Health Criteria 170, Assessing human health risks of chemicals: derivation of guidance values for health-based exposure limits, WHO, Geneva, (1994).

    Google Scholar 

  4. M. L. Dourson, S. P. Felter, and D. Robinson, Evolution of science-based uncertainty factors in noncancer risk assessment,Reg. Toxicol. Pharmacology 24, 108–120 (1996).

    Article  CAS  Google Scholar 

  5. A. G. Renwick, Safety factors and establishment of acceptable daily intake,Food Additives Contaminants 8(2), 135–150 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. A. G. Renwick, Data derived safety factors for the evaluation of food additives and environmental contaminants,Food Additives Contaminants 10(3), 275–305 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. R. D. Barr, W. B. Clarke, R. M. Clarke, J. Venturelli, G. R. Norman, and R. G. Downing, Regulation of lithium and boron levels in normal human blood: environmental and genetic considerations,J. Lab. Clin. Med. 121, 614–619 (1993).

    PubMed  CAS  Google Scholar 

  8. A. S. Gordon, J. S. Prichard, and M. H. Freedman, Seizure disorders and anemia associated with chronic borax intoxication,C. M. A. Journal 108, 719–722 (1973).

    CAS  Google Scholar 

  9. C. D. Hunt, J. L. Herbei, and F. H. Nielsen, Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium and magnesium absorption and retention and blood mineral concentrations,Am. J. Clin. Nutr. 65, 803–813 (1997).

    PubMed  CAS  Google Scholar 

  10. J. A. Jansen, J. Andersen, and J. S. Schou, Boric acid single dose pharmacokinetics after intravenous administration to man,Arch. Toxicol. 55, 64–67 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. C. Job, Resorption and excretion of orally administered boron,Z. Angew. Bader-Klimahelik 20, 137–142 (1973).

    Google Scholar 

  12. C. H. Linden, A. H. Hall, K. W. Kulig, and B. H. Rumack, Acute ingestion of boric acid,J. Toxicol. Clin. Toxicol. 24, 269–279 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. T. L. Litovitz, W. Klein-Schwartz, G. M. Oderda, and B. F. Schmitz, Clinical manifestation of toxicity in a series of 784 boric acid ingestions.Am. J. Emerg. Med. 6, 209–213 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. F. J. Nielson, Dietary supplementation of physiological amounts of boron increases plasma and urinary boron of perimenopausal women (Professional Communication),Proc. North Dakota Acad. of Science 50, 52 (1996).

    Google Scholar 

  15. K. O’Sullivan and M. Taylor, Chronic boric acid poisoning in infants,Arch. Dis. Child 58, 737–739 (1983).

    Article  PubMed  Google Scholar 

  16. H. W. Wiley, The excretion of boric acid from the human body (From the Bureau of Chemistry, Washington, D. C.), pp. 11–19 (1906).

    Google Scholar 

  17. L. C. Wong, M. D. Heimbach, D. R. Truscott, and B. D. Duncan, Boric acid poisoning: Report of 11 cases,Canad. Med. Assn. J. 90, 1018–1023 (1964).

    CAS  Google Scholar 

  18. Y. Bai and C. D. Hunt, Absorption and distribution of boron in rats following a single oral administration of boron,Proc. North Dak. Acad. Science 50, 53 (1996).

    Google Scholar 

  19. R. E. Chapin, W. W. Ku, M. A. Kenney, H. McCoy, B. Gladen, R. N. Wine, R. Wilson, and M. R. Elwell, The effects of dietary boron on bone strength in rats,Fundam. Appl. Toxicol. 35, 205–215 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. W. W. Ku, R. E. Chapin, R. M. Wine, and B. C. Gladen, Testicular toxicity of boric acid (BA): Relationship of dose to lesion development and recovery in the F344 rat,Repro. Toxicol. 7, 305–319 (1993).

    Article  CAS  Google Scholar 

  21. W. W. Ku, R. E. Chapin, R. F. Moseman, R. E. Brink, K. D. Pierce, and K. Y. Adams, Tissue disposition of boron in Fischer rats,Toxicol. Appl. Pharmacol. 111, 145–151 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. F. H. Nielsen, T. R. Schuyler, and E. O. Uthus, Dietary arginine and methionine effects and their modification by dietary boron and potassium on the mineral element composition of plasma and bone in the rat,J. Trace Elem. Exp. Med. 5, 247–259 (1992).

    CAS  Google Scholar 

  23. S. Magour, P. Schramel, J. Ovcar, and H. Maser, Uptake and distribution of boron in rats: Interaction with ethanol and hexobarbital in the brain,Arch. Environ. Contam. Toxicol. 11, 521–525 (1982).

    Article  PubMed  CAS  Google Scholar 

  24. C. J. Price, P. L. Strong, F. J. Murray, and M. M. Goldberg, Blood boron concentrations in pregnant rats fed boric acid throughout gestation,Reproductive Toxicology 11, 833–842 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. R. A. Vanderpool, D. Haff, and P. E. Johnson, Use of inductively coupled plasmamass spectrometry in boron—10 stable isotope experiments with plants, rats and. humans,Environ. Health Perspect. 102 (Suppl. 7), 13–20 (1994).

    PubMed  CAS  Google Scholar 

  26. Kent, N. L. and R. A. McCance, The absorption and excretion of “minor” elements by man. I. Silver, gold, lithium, boron and vanadium,Biochem. J. 35, 837–844 (1941).

    PubMed  CAS  Google Scholar 

  27. J. S. Schou, J. A. Jansen, and B. Aggerbeck, Human pharmacokinetics and safety of boric acid,Arch. Toxicol. Suppl. 7, 232–235 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. W. Dunlop, Serial changes in renal haemodynamics during normal human pregnancy,Brit. J. Obstet. Gynaecol. 88(1), 1–9 (1981).

    Article  CAS  Google Scholar 

  29. E. Krutzen, P. Olofsson, S. E. Back, and P. Nilsson-Ehle, Glomerular filtration rate in pregnancy: a study in normal subjects and in patients with hypertension, preeclampsia and diabetes,Scand. J. Clin. Lab. Invest. 52, 387–392 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. S. N. Sturgiss, R. Wilkinson, and J. M. Davison, Renal reserve during human pregnancy,Am. J. Physiol. 271, F16-F20 (1996).

    PubMed  CAS  Google Scholar 

  31. M. E Meek, R. Newhook, R. G Liteplo, and V. C. Armstrong, Approach to assessment of risk to human health for priority substances under the Canadian Environmental Protection Act.Environmental Carcinogenesis and Ecotoxicology Reviews C12(2), 105–134 (1994).

    Google Scholar 

  32. A. M. Jarabek, Inhalation RfC methodology: Dosimetric adjustments and doseresponse estimation of noncancer toxicity in the upper respiratory tract.Inhal. Toxicol. 6(suppl):301–325 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dourson, M., Maier, A., Meek, B. et al. Boron tolerable intake. Biol Trace Elem Res 66, 453–463 (1998). https://doi.org/10.1007/BF02783155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783155

Index entries

Navigation