Skip to main content
Log in

Growth and development ofThiobacillus ferrooxidans for engineering applications

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

A bioprocessing approach for the extraction of base, nuclear and precious metals from refractory and lean grade ores has been reviewed in this paper. Characteristic morphological features ofThiobacillus ferrooxidans, the organism which has been extensively used for biooxidation of sulphide ores have been discussed. Mechanisms of chemoautotrophy and mineral oxidation have been illustrated. The current engineering applications of this microorganism have also been brought out. Various methods for accelerating the growth ofThiobacillus ferrooxidans for faster biooxidation and genetic manipulation for development of desired strains have been outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black R C, Shute E A, White K J 1989 Enzymology of respiratory iron oxidation.Biohydrometallurgy: 391–401

  • Blaylock B A, Nason A 1963 Electron transport systems of the chemoautotrophFerrobacillus ferrooxidans: Cytochromec containing iron oxidase.J. Biol. Chem. 238: 3453–3462

    Google Scholar 

  • Bowen T J, Happold F C, Taylor B F 1966 Studies on adenosine-5-phosphosulphate reductase fromThiobacillus denitrificans.Biochem. Biophys. Acta 118: 566–576

    Google Scholar 

  • Brierley C L 1978 Bacterial leaching.CRC Crit. Rev. Microbiol. 6: 207–262

    Google Scholar 

  • Brierley J A, Lockwood S J 1977 The occurrence of thermophilic iron oxidizing bacteria on a copper leaching system.FEMS Microbiol. Lett. 2a: 163–165

    Article  Google Scholar 

  • Charles A M, Suzuki I 1966 Mechanism of thiosulfate oxidation byThiobacillus novellus.Biochem. Biophys. Acta 1281: 510–521

    Google Scholar 

  • Colmer A R, Hinkle M E 1947 The role of microorganisms in acid mine drainage.Science 106: 253–256

    Article  Google Scholar 

  • Cox J C, Boxer D M 1986 The role of rusticyanin, a blue-copper protein, in the electron transport chain ofThiobacillus ferrooxidans grown on iron or thiosulfate.Biotechnol. Appl. Biochem. 8: 269–275

    Google Scholar 

  • Denisov G V, Kovrov B G, Trubachev I N, Gribovskaya I V, Stepen A A, Novoselova O I 1980 Composition of a growth medium for continuous cultivation ofThiobacillus ferrooxidans.Mikrobiologiya 49: 3: 473–478

    Google Scholar 

  • Din G A, Suzuki I, Lees H 1967 Ferrous iron oxidation byFerrobacillus ferrooxidans, purification and properties of Fe++ cytochrome and reductance.Can. J. Biochem. 45: 1523–1546

    Article  Google Scholar 

  • Dugan P R, Apel W A 1978 Microbiological desulfurization of coal (eds) L E Murr, A E Torma, J A Brierley.Metallurgical applications of bacterial leaching and related microbiological phenomena (New York: Academic Press) pp 223–50

    Google Scholar 

  • Duncan D W, Trussell P C, Waldin C C 1964 Leaching of chalcopyrite withThiobacillus ferrooxidans, Effect of surfactants and shaking.Appl. Microbiol 12: 122–126

    Google Scholar 

  • Ehrlich H L 1963 Microorganisms in acid drainage from a copper mine.J. Bacteriol 86: 350–352

    Google Scholar 

  • Ferroni G D, Leduc L G, Todd M 1986 Isolation and temperature characterization of psychrotrophic strains ofThiobacillus ferrooxidans from the environment of a uranium mine.J. Gen. Appl. Microbiol. 32: 169–175

    Google Scholar 

  • Griffin E A, Luinstra L 1989 Bioreactor scale-up: Practical considerations for biologically assisted gold recovery.Biohydrometallurgy. pp. 221–230

  • Grishin S I, Tuovinen O H 1988 Fast kinetics of Fe++ oxidation in packed-bed reactors.Appl. Env. Microbiol. 54: 3092–3100

    Google Scholar 

  • Gromova L A, Pereverzev N A, Karavaiko G I 1978 Pili ofThiobacillus ferrooxidans.Mikrobiologiya. 47: 293–295

    Google Scholar 

  • Groudeva V I, Groudev S N, Markar K I 1980 Nitrosoguanidine metagenesis ofThiobacillus ferrooxidans in relation to the levels of its oxidizing activity.Bulg. Acad. Sci. 83: 1401–1404

    Google Scholar 

  • Groudev S N 1985 Differences between strains ofThiobacillus ferrooxidans with respect to their ability to oxidize sulphide minerals. InBiogeotechnology of metals (eds) G I Karavaiko, S N Groudev UNEP, Centre of International Projects (Moscow: GKNT) pp 83–96

    Google Scholar 

  • Hackl R P, Wright F R, Gormely L S 1989 Bioleaching of refractory gold ores — out of the lab and into the plant.Biohydrometallurgy pp 533–549

  • Harrison A P Jr 1982 Genomic and physiological diversity amongst strains ofThiobacillus ferrooxidans and genomic comparison withThiobacillus thiooxidans.Archiv. Microbiol. 131: 68–76

    Article  Google Scholar 

  • Harrison V F, Gow W A, Hughson M R 1966 Factors influencing the application of bacterial leaching to a Canadian uranium ore.J. Met. 18: 1189–94

    Google Scholar 

  • Holmes D S, Yates J R, Schrader J 1988 Mobile repeated DNA sequences inThiobacillus ferrooxidans and their significance for biomining. InBiohydrometallurgy, science and technology letters. (eds) P R Norris, D P Kelly (Kew: Sci. Technol. Lett.) pp 153–160

    Google Scholar 

  • Holmes D S, Yates J R 1990 Basic principles of genetic manipulation ofThiobacillus ferrooxidans for biohydrometallurgical applications InMicrobial mineral recovery (eds) H L Ehrlich, C L Brierley (New York: McGraw-Hill) chap. 2, pp 29–54

    Google Scholar 

  • Huber G, Huber H, Stetter K O 1986 Isolation and characterization of new metal mobilizing bacteria. InWorkshop on Biotechnology for the Mining, Metal-Refining and Fossil Fuel Processing Industries (eds) H L Ehrlich, H S Holmes (New York: Wiley) pp 239–251

    Google Scholar 

  • Jyothi N, Sudha K N, Natarajan K A 1989 Electrochemical aspects of selective bioleaching of sphalerite and chalcopyrite from mixed sulphides.Int. J. Miner. Process. 27: 189–203

    Article  Google Scholar 

  • Karavaiko G I, Pivovarova T A 1973 Mechanism of oxidation of reduced sulphur compounds byThiobacilli.Microbiology. 42: 389–393

    Google Scholar 

  • Kargi F 1982 Enhancement of microbial removal of pyritic sulfur from coal using concentrated cell suspension ofT. ferrooxidans and an external carbon dioxide supply.Biotechnol. Bioeng. 24: 749–752

    Article  Google Scholar 

  • Kasprazak A A, Steenkamp D J 1983 Localization of the major dehydrogenases in two methylotrophs by radio-chemical labeling.J. Bacteriol. 156: 348–353

    Google Scholar 

  • Khalid A M, Bhatti T M, Umar M 1993 An improved solid medium for isolation, enumeration and genetic investigations of autotrophic iron and sulphur oxidizing bacteria.Appl. Microbiol. Biotechnol. 39: 259–263

    Article  Google Scholar 

  • Kinsel N A, Umbreit W W 1964 Method for electrolysis of culture medium to increase growth of the sulfur oxidising iron bacteriumFerrobacillus sulfooxidans.J. Bacteriol. 87: 1243–1244

    Google Scholar 

  • Kovrov B G, Denisov G V, Sekacheva L G 1978 Effect of concentration of ferrous iron on its rate of oxidation byThiobacillus ferrooxidans.Mikrobiologiya 47: 400–402

    Google Scholar 

  • Lawrence R W 1990Biotreatment of gold ores, microbial mineral recovery (eds) H L Ehrlich, C Brierley (New York: McGraw Hill) pp 127–148

    Google Scholar 

  • LIvesey-Goldblatt E, Tunley T H, Nagy I F 1977Int. Conference on Bacterial leaching. (ed.) W Schwertz (Weinheim, New York: Verlag Chemie) 175

    Google Scholar 

  • Livesey-Goldblatt E, Norman P, Livesey-Goldblatt D R 1983 Gold recovery from arsenopyrite/pyrite ore by bacterial leaching and cyanidation.Recent progress in Biohydrometallurgy (eds) G Rossi, A E Torma (Iglesias, Italy: Assoc. Mineraria, Sarda) pp 627–641

    Google Scholar 

  • Lundgren D G, Vestal J R, Tabita F R 1974 The iron oxidising bacteria. InMicrobial iron metabolism (ed.) J B Neiland (New York: Academic Press) pp 457–473

    Google Scholar 

  • Lu W P, Kelly D P 1984 Properties and role of sulphite: cytochrome and oxidoreductase purified fromThiobacillus versustus (A2).J. Gen. Microbial. 130: 1683–1682

    Google Scholar 

  • McCready R G L 1988 Progress in the bacterial leaching of metals in Canada. InBiohydrometallurgy, Proc. Int. Symp. Warwick, Science and Technology Letters, Kew (eds) P R Norris, D P Kelley pp 177–195

  • Monticella D J, Finnerty W R 1985 Microbial desulfurization of fossil fuels.Annu. Rev. Microbiol. 37: 371–89

    Article  Google Scholar 

  • Morin D, Ollivier P 1989 Pilot practise of continuous bioleaching of a gold refractory sulfide concentrate with a high AS content.Biohydrometallurgy pp 563–577

  • Murthy K S N, Natarajan K A 1992 The role of surface attachment ofThiobacillus ferrooxidans on the biooxidation of pyrite.Miner. Metall. Process. 9: 20–24

    Google Scholar 

  • Natarajan K A 1988 Electrochemical aspects of bioleaching of multisulfide minerals.Mimer. Metall. Process. 5: 61–65

    Google Scholar 

  • Natarajan K A 1990 Electrochemical aspects of bioleaching of base metal sulfides. InMicrobial mineral recovery (eds) H L Ehrlich, C L Brierley (New York: McGraw Hill) chap. 4, pp 79–106

    Google Scholar 

  • Natarajan K A 1992a Bioprocessing of enhanced gold recoveryMiner.Process Extractive Metall. Rev. 8: 143–153

    Article  Google Scholar 

  • Natarajan K A 1992b Bioleaching of sulphides under applied potentials.Hydrometallurgy 29: 161–172

    Article  Google Scholar 

  • Natarajan K A 1992c Electrobioleaching of base metal sulfides.Metall. Trans. B23: 5–11

    Google Scholar 

  • Natarajan K A 1992d Effect of applied potentials on the activity and growth ofThiobacillus ferrooxidans.Biotech. Bioeng. 39: 907–913

    Article  Google Scholar 

  • Natarajan K A 1993 Biotechnology in gold processing.Bull. Mater. Sci. 16: 501–508

    Google Scholar 

  • Norris P R, Kelly D P 1982 The use of mixed microbial cultures in metal recovery. InMicrobial Interactions and communities (eds) A T Bull and J H Slater (London: Academic Press) 443–474

    Google Scholar 

  • Parker C D, Prisk J 1953 The oxidation of inorganic compounds of sulphur by various sulphur bacteriaJ. Gen. Microbiol. 8: 344–364

    Google Scholar 

  • Peck H D 1960 Adenosine 5′-phosphosulfate as an intermediate in the oxidation of thiosulfate byThiobacillus thioparus Proc. Natl. Acad. Sci. USA 46: 1053–1057

    Article  Google Scholar 

  • Pringsheim E G 1949 Iron bacteria.Biol. Rev. 24: 200–250

    Article  Google Scholar 

  • Rawlings D E, Sewcharan R, Woods D R 1986 InFundamentals and applied biohydrometallurgy (eds) R W Lawrence, R M R Branion, H G Ebnur (Amsterdam: Elsevier) pp 419–427

    Google Scholar 

  • Schedel M, Truper H G 1979 Purification ofThiobacillus dentrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties.Biochim. Biophys. Acta 56: 454–467

    Google Scholar 

  • Silverman M P, Lundgren D G 1959 Studies on the chemoautotrophic iron bacteriumF. ferrooxidans. J. Bacteriol. 642–647

  • Sugio T, Tano T, Imai K 1981 Isolation and some properties of two kinds of cytochromec oxidase from iron grownThiobacillus ferrooxidans.Agric. Biol. Chem. 45: 1791–1797

    Google Scholar 

  • Toghrol F, Southerland W M 1983 Purification ofThiobacillus morellus, sulfite oxidase.J. Biol. Chem. 258: 6762–6786

    Google Scholar 

  • Torma A E, Oolman T 1992 Bioliberation of gold.Int. Mater. Rev. 37: 187–193

    Google Scholar 

  • Tuovinen O H, Kelly D P 1974 Studies on the growth ofThiobacillus ferrooxidans IV. Influence of monovalent metal cations on ferrous iron oxidation and uranium toxicity in growing cultures.Archiv. Microbiol. 98: 167–74

    Article  Google Scholar 

  • Yamanaka T, Yoshiska T, Kimura K 1981 Purification of sulphite: cytochromeC reductase ofThiobacillus novellus and the reconstitution of its sulphite oxidase system with the purified constituents.Plant Cell Physiol. 22: 613–622

    Google Scholar 

  • Yates J R, Holmes D S 1987 Two families of repreated DNA sequences inThiobacillus ferrooxidans.J. Bacteriol. 169: 1861–1870

    Google Scholar 

  • Yates J R, Cunningham R R, Holmes D S 1988 A new insertion sequence inThiobacillus ferrooxidans.Proc. Natl. Acad. Sci., USA, 85: 7284–7287

    Article  Google Scholar 

  • Yates M G, Nason A 1966 Electron transport systems of the chemoautotrophFerrobacillus ferrooxidans II purification and properties of a heat-labile iron cytochromec reductase.J. Biol. Chem., 244: 4872–4880

    Google Scholar 

  • Yunker S B, Radovich J M 1985 Enhancement of growth and ferrous iron oxidation rates ofThiobacillus ferrooxidans by electrochemical reduction of ferric iron.Biotech. Bioeng., 27: 1867–1875

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, S., Natarajan, K.A. Growth and development ofThiobacillus ferrooxidans for engineering applications. Sadhana 20, 851–869 (1995). https://doi.org/10.1007/BF02744412

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02744412

Keywords

Navigation