Skip to main content
Log in

A new view on the role of phospholipids fatty acids: Possibility of electric charge transfer in the membrane monolayer

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The fatty acid composition of phospholipids of subcellular fractions that are both generators and consumers of energy, mitochondria, synaptosomes, and myelin, has been studied in the brain and liver of several representatives of poikilothermal and homoiothermal vertebrates. The terrestrial poikilothermal animals have been shown to be close to homoiothermal animals by the main characteristics of membranes of the subcellular fractions, such as the content of saturated acids, the unsaturation index, and the ω3/ω6 acid ratio, but differ essentially from aquatic poikilotherms. The conclusion is made that the similarity in the fatty acid characteristics of the terrestrial poikilothermal and homoiothermal vertebrate membranes is due to their inhabitation in the oxygen-rich environment, while differences in intensity of the oxygen consumption are due to their different body temperatures. The models of structure of an arbitrary fragment of the lipid component of the studied trout membranes are presented, which illustrate a concept of a new functional role of fatty acids as participants of the electron transfer chain in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansell, G.B., Hawthorne, I.N., and Daw-son, R.M.C.,Form and Function of Phospholipids, Ansell, G.B., Ed., Elsevier, 1973.

  2. Bernal, J.D., General Discussion,Trans. Faraday Soc., 1933, vol. 29, pp. 1082–1083.

    Google Scholar 

  3. Stewart, G.T., Mesomorphic Forms of Lipid in the Structure of Normal and Atheromatous Tissues,Z. Pathol. Bacter., 1961, vol. 81, pp. 385–393.

    Article  CAS  Google Scholar 

  4. Singer, S.J. and Nicolson G.L., The Fluid Mosaic Model of the Structure of Cell Membranes,Science, 1972, vol. 175, pp. 720–731.

    Article  PubMed  CAS  Google Scholar 

  5. Chapman, D., Phase Transitions and Fluidity Characteristics of Lipid and Cell Membranes,Quart. Rev. Biophys., 1975, vol. 8, no. 2, pp. 185–235.

    Article  CAS  Google Scholar 

  6. Zabelinskii, S.A., Chebotareva, M.A., and Krivchenko, A.I., Comparative Study of Mitochondrial Phospholipids in Vertebrates, Living at Different Conditions of Oxygen Supply. A New View on a Role of Fatty Acids,Zh. Evol Biokhim. Fiziol., 1998, vol. 34, pp. 163–172.

    PubMed  CAS  Google Scholar 

  7. Eichberg, J., Whittaker, V.P., and Dawson, R.M., Distribution of Lipids in Subcellular Particles of Quinea-Pig Brain,Biochem., 1964, vol. 92, pp. 91–100.

    CAS  Google Scholar 

  8. Pomazanskaya, L.F., Chirkovskaya, E.V., Prav-dina, N.I.,et al., Phospholipids in the Brain of Fish and Representatives of Other Vertebrate Classes,Fiziologiya i biokhimiya morskikh i presnovodnykh zhivotnykh (Physiology and Biochemistry of Marine and Freshwater Animals), Kreps, E.M., Ed., Leningrad, 1979, pp. 22–28.

  9. Savina, M.V., Ivanova, T.I., and Egoyants, M.A., Mitochondria of Some Poikilothermal Vertebrates: Oxidative Phosphorylation and Adenine Nucleotides,Zh. Evol. Biokhim. Fiziol, 1993, vol. 29, pp. 113–119.

    PubMed  CAS  Google Scholar 

  10. Kreps, E.M., Krasil’nikova, V.I., Patrikee-va, M.V.,et al., Phospholipids of Endocellular Particles and Brain Myelin Sheaths in the Row of Vertebrates,Zh. Evol. Biokhim. Fiziol, 1968, vol.4, pp. 211–223.

    Google Scholar 

  11. Folch, J., Lees M., and Sloan-Stenley, G., A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues,J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    PubMed  CAS  Google Scholar 

  12. Pomazanskaya, L.F., Pravdina, N.I., Zabelin-skii, S.A.,et al., Biochemical Study of Fatty Acids of Phospholipids from Various Subcellular Fractions of the Rabbit Brain,Zh. Evol Biokhim. Fiziol, 1967, vol. 3, pp. 3–15.

    CAS  Google Scholar 

  13. Kreps, E.M.,Lipidy kletochnykh membran (Lipids of Cellular Membranes), Leningrad, 1981.

  14. Zabelinskii, S.A., Chebotareva, M.A., Kost-kin, V.B., and Krivchenko, A.I., Phospholipids and Their Fatty Acids in Mitochondria, Synaptosomes and Myelin from Liver and Brain of Trout and Rat: A New View on Role of Fatty Acids in Membranes,Comp. Biochem. Physiol, 1999, vol. 124B, pp. 187–193.

    CAS  Google Scholar 

  15. Denisova, N.A. and Zabelinskii, S.A., Proteolipids of Myelin and Synaptosomes in the Brain of the Frog and Chicken,Zh. Evol. Biokhim. Fiziol, 1986, vol. 22, pp. 394–399.

    PubMed  CAS  Google Scholar 

  16. Pravdina, N.I. and Chebotareva, M.A., Fatty Acids of Phospholipids of Brain Mitochondria and Myelin in the Row of Vertebrates,Zh. Evol. Biokhim. Fiziol, 1971, vol. 7, pp. 41–54.

    CAS  Google Scholar 

  17. Brooks, P.S., Hulbert, A.J., and Brand, M.D., The Proton Permeability of Liposomes Made from Mitochondrial Inner Membrane Phospholipids: No Effect of Fatty Acids Composition,Biochem. Biophys. Acta, 1997, vol. 1330, pp. 157–164.

    Article  Google Scholar 

  18. Brooks, P.S., Buckingham, J.A., Tenreiro, A.M.,et al., The Proton Permeability of the Inner Membrane of Liver Mitochondria from Ectothermic and Endothermic Vertebrates and from Obese Rats: Correlation with Standard Metabolic Rate and Phospholipid Fatty Acid Composition,Comp. Biochem. Physiol., 1998, vol. 119B, pp. 325–334.

    Google Scholar 

  19. Hazel, J., The Effect of Temperature Acclimation upon Succinic Dehydrogenase Activity from the Muscle of Common Goldfish: Lipid Reactivation of the Soluble Enzyme,Comp. Biochem. Physiol., 1972, vol. 43B, pp. 863–882.

    Google Scholar 

  20. Boldyrev, A.A. and Tverdislov, V.A.,Molekulyarnaya organizatsiya i mekhanizm funktsionirovaniya Na-nasosa (Molecular Organization and Mechanism of Functioning of the Na-Pump), Available from VINITI, Moscow, 1978.

  21. Sun, C.T. and Horroks, L.A., The Acyl and Alk-1-Enylgroups of the Major Phosphoglycerides from Ox Brain Myelin and Mouse Brain Microsomal, Mitochondrial and Myelin Fractions,Lipids, 1970, vol. 5, pp. 1006–1012.

    Article  PubMed  CAS  Google Scholar 

  22. Mendelsohn, R., Laser-Raman Spectroscopic Study of Egg Lecithin and Egg Lecithin-Choles-terol Mixtures,Biochim. Biophys. Acta, 1972, vol.290, pp. 15–21.

    Article  PubMed  CAS  Google Scholar 

  23. Lippert, J.L. and Peticolas, W.L., Raman Active Vibrations in Long-Chain Fatty Acids and Phospholipid Sonicates,Biochim. Biophys. Acta, 1972, vol. 282, pp. 8–17.

    Article  PubMed  CAS  Google Scholar 

  24. Zabelinskii, S.A., Chebotareva, M.A., and Krivchenko, A.I., Comparative Study of Phospholipids and Their Fatty Acid Composition in Different Organs of Mammals and Fishes. A Role of Phospholipid Molecules Stereometry at Oxygen Extraction from Environmental Medium in These Groups of Animals,Zh. Evol. Biokhim. Fiziol., 1996, vol. 32, pp. 722–734.

    PubMed  CAS  Google Scholar 

  25. Stubbs, D.C. and Smith, A.D., The Modification of Mammalian Membrane Polyunsaturated Fatty Acid. Composition in Relation to Membrane Fluidity and Function,Biochem. Biophys. Acta, 1984, vol. 779, pp. 89–137.

    PubMed  CAS  Google Scholar 

  26. Applegate, K.R. and Glomset, J.A., Computer Based Modeling of the Conformation and Packing Properties of Decosahexaenoic Acid,J. Lipid Res., 1986, vol. 27, pp. 658–680.

    PubMed  CAS  Google Scholar 

  27. Rabinovich, A.L. and Ripatti, P.O., Polyunsaturated Hydrocarbon Chains of Lipids: Structure, Properties, Function,Uspekhi Sovr. Biol., 1994, vol. 114, pp. 581–594.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabelinskii, S.A., Chebotareva, M.A. & Krivchenko, A.I. A new view on the role of phospholipids fatty acids: Possibility of electric charge transfer in the membrane monolayer. J Evol Biochem Phys 36, 267–276 (2000). https://doi.org/10.1007/BF02737042

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737042

Keywords

Navigation