Skip to main content
Log in

Phospholipids and fatty acids in erythrocytes of lamprey Lampetra fluviatilis during autumn prespawning period and the absorption spectrum of their lipid extract

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The contents of some classes of phospholipids and their fatty acid composition were investigated in erythrocytes of the lamprey Lampetra fluviatilis during the autumn period of its prespawning migration. The erythrocyte phospholipid spectrum in lamprey, the oldest vertebrate, was found to be similar to that in many mammals. A four-fold prevalence of phosphatidylcholine over sphingomyelin, as well as a prevalence of ω3- over ω6-acids, indicate the “fluidity” of the lamprey erythrocytic membranes—a significant index of the lamprey erythrocyte deformation ability. Phosphatidylethanolamine and its plasmalogenic form are the most unsaturated phospholipids (unsaturation indices are 230 and 342, respectively). Phosphatidylcholine is the most saturated phospholipid (UI is 167). The major fatty acid indices characterizing the fluidity of erythrocyte membranes were found to remain intact during the whole period of lamprey prespawning migration until spawning. The blood contains several buffer systems, specifically membrane phospholipids, which neutralize incoming acids and alkalis. During life activities of organisms, the pH inside erythrocytes changes. Presumably, the blood buffer properties are mainly determined by the dissociation of water. Inside the narrow vessels of the circulatory system, hemoglobin binds and releases oxygen molecules due to the interaction of the buffer systems with water. The dissociability of water, as well as ion movements, generate local pH changes in erythrocytes passing through the narrow vessels allowing oxygen molecules to be displaced/attached from/to hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Biology of Lampreys, Hardisty, M.W. and Potter, I.C., Eds., Acad. Press, 1971–1982, vol. 1–4.

  2. Korzhuev, P.A., Evolyutsiya dyhatel’noi funktsii krovi (Evolution of Blood Respiratory Function), Izd. AN SSSR, Moscow–Leningrad, 1949.

    Google Scholar 

  3. Zhiteneva, L.D., Makarov, E.V., and Rudnitskaya, O.A., Evolyutsiya krovi (Evolution of Blood), Delovoi Mir, Rostov-na-Donu, 2001.

    Google Scholar 

  4. Nikinmaa, M., Airaksinen, S., and Virkki, L.V., Hemoglobin function in lamprey erythrocytes: interactions with membrane function in the regulation of gas transport and acid-base balance, J. Exp. Biol., 1995, vol. 198 (Pt. 12), pp. 2423–2430.

    CAS  PubMed  Google Scholar 

  5. Zabelinskii, S.A., Chebotareva, M.A., Shukolyukova, E.P., and Krivchenko, A.I., Fatty Acid Composition of Phospholipids of Erythrocytes of Lamprey, Frog, Rat, and Absorption Spectra of Their Lipid Extracts, Zh. Evol. Biokhim. Fiziol., 2014, vol. 50(4), pp. 269–274.

    CAS  PubMed  Google Scholar 

  6. Folch, J., Lees, M., and Sloane-Stenley, G., A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem., 1957, vol. 226,pp. 497–509.

    CAS  PubMed  Google Scholar 

  7. Rouser, G., Siakotos, N.N., and Fleischer, S., Quantitative Analysis of Phospholipids by Thin-Layer Chromatography and Phosphorus Analysis of Spots, Lipids, 1966, vol. 226,pp. 85–86.

    Article  Google Scholar 

  8. Chebotareva, M.A., Cholesterol in the Brain of Cartilaginous and Bony Fishes, Zh. Evol. Biokhim. Fiziol., 1979, vol. 15, pp. 303–306.

    CAS  PubMed  Google Scholar 

  9. Zabelinskii, S.A., Brovtsyna, N.B., Chebotareva, M.A., and Krivchenko, A.I., Respiratory Organ Lipids in Fishes and Mammals. A Model Representation of the Area of the Lipid Component, Zh. Evol. Biokhim. Fiziol., 1991, vol. 27(6), pp. 719–729.

    CAS  PubMed  Google Scholar 

  10. Zabelinskii, S.A., Brovtsyna, N.B., Chebotareva, M.A., Gorbunova, O.B., and Krivchenko, A.I., Comparative investigation of lipid and fatty acid composition of fish gills and mammalian lungs. A model of the membrane lipid components areas, Comp. Biochem. Physiol., 1995, vol. 111B, pp. 127–140.

    Article  CAS  Google Scholar 

  11. Zabelinskii, S.A., Brovtsyna, N.B., Chebotareva, M.A., and Krivchenko, A.I., The possible role of fatty acids and their conformation in the realization of the respiratory function and in the adaptations of fish gill membranes and mammalian Lungs, Izv. Akad. Nauk. Ser. Biol., 1994, vol. 4, pp. 550–560.

    PubMed  Google Scholar 

  12. Korzhuev, P.A., Evolyutsiya, gravitatsiya, nevesomost’ (Evolution, Gravitation, Weightlessness), Moscow, Nauka, 1971.

    Google Scholar 

  13. Gennis, P., Biomembrany: molekulyarnaya struktura i funktsii (Biomembranes: Molecular Structure and Functions), Moscow, Mir, 1997.

    Google Scholar 

  14. Chernitskii, E.A. and Vorobei, A.V., Struktura i funktsii eritrotsitarnykh membran (Structure and Functions of Erythrocyte Membranes), Minsk, 1981.

    Google Scholar 

  15. Cantin, B., Brun, L.-D., Gagne, C., Murthy, M.R., Lupien, P.J., and Julien, P., Alterations in erythrocyte membrane lipid composition and fluidity in primary lipoprotein lipase deficiency, Biochim. Biophys. Acta, 1992, vol. 1139, no. 1–2, p. 25.

    Article  CAS  PubMed  Google Scholar 

  16. Dyatlovitskaya, E.V., Sphingolipids and tumor growth, Biokhimiya, 1995, vol. 23, p. 843.

    Google Scholar 

  17. Tyurin, I.A., Arduini, A., Tyurina, U.U., Sokolova, T.V., Furaev, V.V., Rychkova, M.P., and Arrigoni-Martelli, E., Reparation of membrane lipid bilayer under oxidative stress: reacylation of phosphatidylethanolamine in membranes of synaptosomes, photoreceptors and erythrocytes, Zh. Evol. Biokhim. Fiziol., 1996, vol. 32, no. 3, p. 248.

    CAS  Google Scholar 

  18. Vance, J.E. and Steenbergen, R., Metabolism and functions of phosphatidylserine, Progr. Lipid Res., 2005, vol. 44, p. 207.

    Article  CAS  Google Scholar 

  19. Kaplan, O.V., Erythrocyte lipids and blood gas transport functions at acute bleeding, Vopr. Med. Khim., 1995, vol. 41, p. 23.

    CAS  PubMed  Google Scholar 

  20. Shvets, V.I., Stepanov, A.E., Krylova, V.N., and Gulak, P.V., Mioinozit i fosfoinozitidy (Myoinosite and Phosphoinositides), Moscow, Nauka, 1987.

    Google Scholar 

  21. Nishizura, Y., Studies and perspectives of protein kinase C, Science, 1986, vol. 233, p. 305.

    Article  Google Scholar 

  22. Kreps, E.M., Lipidy kletochnykh membran (Lipids of the Cell Membranes), Leningrad, Nauka, 1981.

    Google Scholar 

  23. Zhukov, E.K., Dykhatel’naya funktsiya krovi (Blood Respiration Function), Leningrad, 1937.

    Google Scholar 

  24. Nikinmaa, M., Kunnamo-ojala, T., and Railo, E., Mechanisms of pH regulation in lamprey (Lampetra fluviatilis) red blood cells, J. Exp. Biol., 1986, vol. 122, pp. 355–367.

    CAS  PubMed  Google Scholar 

  25. Blumenfeld, L.A., Reshaemye i nereshaemye problemy biologicheskoi fiziki (Solvable and Unsolvable Problems of Biological Physics), Moscow, 1971.

    Google Scholar 

  26. Blumenfeld, L.A., Problemy biologicheskoi fiziki (Problems of Biological Physics), Moscow, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Zabelinskii.

Additional information

Original Russian Text © S.A. Zabelinskii, M.A. Chebotareva, E.P. Shukolyukova, A.I. Krivchenko, 2015, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2015, Vol. 51, No. 4, pp. 251—257.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabelinskii, S.A., Chebotareva, M.A., Shukolyukova, E.P. et al. Phospholipids and fatty acids in erythrocytes of lamprey Lampetra fluviatilis during autumn prespawning period and the absorption spectrum of their lipid extract. J Evol Biochem Phys 51, 288–295 (2015). https://doi.org/10.1134/S0022093015040043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093015040043

Key words

Navigation