Skip to main content
Log in

Interdiffusion in γ (face-centered cubic) Ni-Cr-X (X=Al, Si, Ge, or Pd) alloys at 900 °C

  • Section I: Basic And Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Interdiffusion in nickel (Ni)-chromium (Cr) (face-centered cubic γ phase) alloys with small additions of aluminum (Al), silicon (Si), germanium (Ge), or palladium (Pd) was investigated using solid-to-solid diffusion couples. Ni-Cr-X alloys having compositions of Ni-22at.% Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge, and Ni-22at.%Cr-1.6at.%Pd were manufactured by arc casting. The diffusion couples were assembled in an Invar steel jig, encapsulated in Ar after several hydrogen purges, and annealed at 900 °C in a three-zone tube furnace for 168 h. Experimental concentration profiles were determined from polished cross sections of these couples by using electron probe microanalysis with pure element standards. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine the average ternary interdiffusion coefficients. The effects of ternary alloying additions on the diffusional behavior of Ni-Cr-X alloys are presented in the light of the diffusional interactions and the formation of a protective Cr2O3 scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Sims, N.S. Stoloff, and W.C. Hagel,Superalloys II, John Wiley and Sons, 1987

  2. P. Kofsted, Growth and Protective Properties of Chromia (Cr2O3) and Alumina (Al2O3) Scales, Protective Coatings,High Temperature Corrosion, Elsevier, London, 1980, p 389–423

    Google Scholar 

  3. J.L. Smialek, C.A. Barrett, and J.C. Schaffer, Design for Oxidation Resistance,ASM Handbook, Vol. 20, Materials Selection and Design, George E. Dieter, Ed., ASM International, 1997, p 589–602

  4. F.H. Stott, G.C. Wood, and M.G. Hobby, A Comparison of the Oxidation Behavior of Fe-Cr-Al, NI-Cr-Al and Co-Cr-Al Alloys,Oxid. Met., 1971,3, p 103–113

    Article  Google Scholar 

  5. C.E. Lowell, A Scanning Electron Microscope Study of the Surface Morphology of TD-NiCr Oxidized at 800 °C to 1200 °C,Oxid. Met., 1972,5, p 205–220

    Article  Google Scholar 

  6. C.E. Lowell, Cyclic and Isothermal Oxidation Behavior on Some Ni-Cr Alloys,Oxid. Met., 1973,7, p 95–115

    Article  Google Scholar 

  7. G.M. Ecer and G.H. Meier, Oxidation of High-Ehromium Ni-Cr Alloys,Oxid. Met., 1979,13, p 119–158

    Article  Google Scholar 

  8. G. Benabderrazik, G. Moulin, and A.M. Huntz, Relation Between Impurities and Oxide-Scale Growth Mechanisms on Ni-34Cr and Ni-20Cr Alloys: I. Influence of C, Mn, and Si,Oxid. Met., 1990,33, p 191–235

    Article  Google Scholar 

  9. J.F. Schmitt, N. Pacia, P. Pigeat, and B. Weber, Study of the Initial Oxidation of a Ni-20Cr Alloy in the Temperature Range 550–830 °C: Influence of Mechanical Deformation,Oxid. Met., 1995,44, p 429–452

    Article  Google Scholar 

  10. C.K. Kim and L.W. Hobbs, Microstructural Evidence for Short-Circuit Oxygen Diffusion Paths in the Oxidation of a Dilute Ni-Cr Alloy,Oxid. Met., 1996,45, p 247–265

    Article  Google Scholar 

  11. B. Ahmad and P. Fox, STEM Analysis of the Transient Oxidation of a Ni-20Cr Alloy at High Temperature,Oxid. Met., 1998,52, p 113–138

    Article  Google Scholar 

  12. J.R. Nicholls and M.J. Bennett, Cyclic Oxidation-Guidelines for Test Standardization, Aimed at the Assessment of Service Behavior,Mater. High Temp., 2000,17, p 413–428

    Article  Google Scholar 

  13. B. Li and B. Gleeson, Effect of Silicon on Oxidation Behavior of Ni-Base Chromia-Forming Alloys,Oxid. Met., 2006,65, p 101–122

    Article  Google Scholar 

  14. F.H. Stott, G.C. Wood, and J. Stringer, The Influence of Alloying Elements on the Development and Maintenance of Protective Scales,Oxid. Met., 1995,44, p 113–145

    Article  Google Scholar 

  15. D.P. Whittle and J. Stringer, Improvements in High Temperature Oxidation Resistance by Additions of Reactive Elements or Oxide Dispersions,Proc. R. Soc. Lond., Ser. A, 1980,295, p 309–329

    Article  ADS  Google Scholar 

  16. G.C. Wood and F.H. Scott, Oxidation of Metals,Mater. Sci. Technol., 1987,3, p 519–530

    Google Scholar 

  17. G.C. Wood, J.A. Richards, M.G. Hobby, and J. Boustead, Identification of Thin Healing Layers at Based of Oxide Scale on Fe-Cr Base Alloys,Corros. Sci., 1969,9, p 659–671

    Article  Google Scholar 

  18. A.G. Revsz and F.P. Fehlner, The Role of Noncrystalline Films in the Oxidation and Corrosion of Metals,Oxid. Met., 1981,15, p 297–321

    Article  Google Scholar 

  19. M.J. Bennett, J.A. Desport, and P.A. Labun, Analytical Electron Microscopy of a Selective Oxide Scale Formed on 20% Cr-25% Ni-Nb Stainless Steel,Oxid. Met., 1984,22, p 291–306

    Article  Google Scholar 

  20. M.J. Bennett, J.A. Despota, and P.A. Labun, Transverse Microstructue of an Oxide Scale Formed on a 20%Cr-25%Ni-Nb Stabilized Stainless Steel,Proc. R. Soc. Lond., Ser. A, 1987,412, p 223–230

    Article  ADS  Google Scholar 

  21. R.C. Lobb, J.A. Sasse, and H.E. Evans, Dependence of Oxidation Behavior on Silicon Content of 20%Cr Austenitic Steels,Mater. Sci. Technol., 1989,5, p 828–834

    Google Scholar 

  22. W.C. Hagel, Oxidation of Iron Nickel and Cobalt-Base Alloys Containing Aluminum,Corrosion, 1965,21, p 316–326

    Google Scholar 

  23. J.A. Nesbitt, Numerical Modeling of High-Temperature Corrosion Processes,Oxid. Met., 1995,44, p 309–338

    Article  Google Scholar 

  24. H.E. Evans, A.T. Donaldson, and T.C. Gilmour, Mechanisms of Breakaway Oxidation and Application to a Chromia-Forming Steel,Oxid. Met., 1999,52, p 379–402

    Article  Google Scholar 

  25. J.A. Nesbitt and R.W. Heckel, Interdiffusion in Ni-Rich, Ni-Cr-Al Alloys at 1100 and 1200°C: Part I. Diffusion Paths and Microstructures,Metall. Trans. A, 1987,18A, p 2061–2086

    ADS  Google Scholar 

  26. C.S. Giggin and F.S. Pettit, Oxidation of Ni-Cr-Al Alloys Between 1000 and 1200 °C,J. Electrochem. Soc., 1971,118, p 1782–1790

    Article  Google Scholar 

  27. B.A. Pint, J.R. Keiser, “Alloy Selection for High Temperature Heat Exchangers,” NACE Paper 06-469, presented at NACE Corrosion 2006 (San Diego, CA), NACE International, March 2006

  28. M.P. Brady, B. Gleeson, and I.G. Wright, Alloy Design Strategies for Promoting Protective Oxide Scale Formation,JOM, 2000,52, p 16–21

    Article  ADS  Google Scholar 

  29. D.J. Young and B. Gleeson, Alloy Phase Transformations Driven by High Temperature Corrosion Processes,Corros. Sci., 2002,44, p 345–357

    Article  Google Scholar 

  30. L. Onsager, Theories and Problems of Liquid Diffusion,Ann. N. Y. Acad. Sci., 1965,46, p 241–265

    Article  ADS  Google Scholar 

  31. M.A. Dayananda and C.W. Kim, Zero-Flux Planes and Flux Reversals in Cu-Ni-Zn Diffusion Couples,Metall. Trans. A, 1979,10A, p 1333–1339

    ADS  Google Scholar 

  32. M.A. Dayananda and Y.H. Sohn, Average Effective Interdiffusion Coefficients and Their Applications for Isothermal Multicomponent Diffusion Couples,Scr. Mater., 1996,40, p 683–688

    Article  Google Scholar 

  33. M.A. Dayananda and Y.H. Sohn, A New Approach for the Determination of Interdiffusion Coefficients in Ternary Systems,Metall. Mater. Trans. A, 1999,30A, p 535–543

    Article  Google Scholar 

  34. M.S. Thompson, J.E. Morral, and A.D. Romig Jr., Applications of the Square Root Diffusivity to Diffusion in Ni-Al-Cr Alloys,Metall. Trans. A, 1990,21A, p 2679–2685

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garimella, N., Sohn, Y. & Brady, M.P. Interdiffusion in γ (face-centered cubic) Ni-Cr-X (X=Al, Si, Ge, or Pd) alloys at 900 °C. JPED 27, 665–670 (2006). https://doi.org/10.1007/BF02736570

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736570

Keywords

Navigation