Skip to main content
Log in

Numerical modeling of high-temperature corrosion processes

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Numerical modeling of the diffusional transport associated with high-temperature corrosion processes is reviewed. These corrosion processes include external scale formation and internal subscale formation during oxidation, coating degradation by oxidation and substrate interdiffusion, carburization, sulfidation and nitridation. The studies that are reviewed cover such complexities as concentration-dependent diffusivities, cross-term effects in ternary alloys, and internal precipitation where several compounds of the same element may form (e.g., carbides of Cr) or several compounds exist simultaneously (e.g., carbides containing varying amounts of Ni, Cr, Fe or Mo). In addition, the studies involve a variety of boundary conditions that vary with time and temperature. Finite-difference (F-D) techniques have been applied almost exclusively to model either the solute or corrodant transport in each of these studies. Hence, the paper first reviews the use of F-D techniques to develop solutions to the diffusion equations with various boundary conditions appropriate to high-temperature corrosion processes. The bulk of the paper then reviews various F-D modeling studies of diffusional transport associated with high-temperature corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner,J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  2. S. W. Guan, H. C. Yi, and W. W. Smeltzer,Oxid. Met. 41, 389, (Pt. I), 401 (Pt. II) (1994).

    Google Scholar 

  3. R. A. Rapp,Acta Metall. 9, 730 (1961).

    Google Scholar 

  4. R. F. Sekerka, C. L. Jeanfils, and R. W. Heckel, inLectures on the Theory of Phase Transformations, H. I. Aaronson (ed.) (TMS-AIME, New York, 1975) p. 117.

    Google Scholar 

  5. J. A. Nesbitt,J. Electrochem. Soc. 136, 1511 (1989).

    Google Scholar 

  6. J. Crank,The Mathematics of Diffusion (ClarendonPress, Oxford, 1975).

    Google Scholar 

  7. W. Jost,Diffusion in Solids, Liquids, Gases (Academic Press, New York, 1952).

    Google Scholar 

  8. J. Ågren,J. Phys. Chem. Solids 43, 385 (1982).

    Google Scholar 

  9. R. W. Hornbeck,Numerical Methods (Quantum Publishers, New York, 1975).

    Google Scholar 

  10. M. L. James, G. M. Smith, and J. C. Wolford,Analog and Digital Computer Methods (International Textbook, Scranton, 1964).

  11. J. A. Nesbitt and R. W. Heckel,Thin Solid Films 119, 281 (1984).

    Google Scholar 

  12. E. Y. Lee, D. M. Chartier, R. R. Biederman, and R. D. Sisson, Jr.,Surf. Coat. Technol. 32, 19 (1987).

    Google Scholar 

  13. J. I. Goldstein and A. E. Moren,Met. Trans. 9A, 1515 (1975).

    Google Scholar 

  14. D. Farkas and K. Ohla,Oxid. Met. 19, 99 (1983).

    Google Scholar 

  15. J. A. Nesbitt,J. Electrochem. Soc. 136, 1518 (1989).

    Google Scholar 

  16. J. A. Nesbitt and E. J. Vinarcik, inDamage and Oxidation Protection in High Temperature Composites, G. K. Haritos, and O. O. Ochoa, eds., AD-Vol. 25-1 (ASME, 1991), p. 9.

  17. H. C. F. Rozendaal, E. J. Mittemeijer, P. F. Colijn, and P. J. Van Der Schaaf,Met. Trans. 14A, 395 (1983).

    Google Scholar 

  18. K. Bongartz, D. F. Lupton, and H. Schuster,Met. Trans. 11A, 1883 (1980).

    Google Scholar 

  19. D. Murray and F. Landis,J. Heat Transfer 81, 106 (1959).

    Google Scholar 

  20. S. Crusius, G. Inden, U. Knoop, L. Höglund, and J. Ågren,Z. Metallkd. 83, 673 (1992).

    Google Scholar 

  21. A. Denis, E. Moyano, and A. García,J. Nucl. Mater. 110, 11 (1982).

    Google Scholar 

  22. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood,Acta Metall. 15, 1421 (1967).

    Google Scholar 

  23. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully,Acta Metall. 15, 1747 (1967).

    Google Scholar 

  24. C. E. Lowell, C. A. Barrett, R. W. Palmer, J. V. Auping, and H. B. Probst,Oxid. Met. 36, 81 (1991).

    Google Scholar 

  25. J. A. Nesbitt, inDiffusion Analysis and Applications, A. D. Romig, Jr. and M. A. Dayananda (eds) (TMS, Allendale, 1989), p. 307.

    Google Scholar 

  26. E. A. Garcia,J. Nucl. Mater. 92, 249 (1980).

    Google Scholar 

  27. K. M. Vedula, A. W. Funkenbusch, and R. W. Heckel,Oxid. Met. 16, 385 (1981).

    Google Scholar 

  28. H. G. Sockel, H. J. Christ, and W. Christl,Mater. Sci. Eng. 87, 119 (1987).

    Google Scholar 

  29. K. Bongartz, W. J. Quadakkers, R. Schulten, and H. Nickel,Met. Trans. 20A, 1021 (1989).

    Google Scholar 

  30. K. Bongartz, R. Schulten, W. J. Quadakkers, and H. Nickel,Corrosion 42, 390 (1986).

    Google Scholar 

  31. D. Farkas, H. Ghasemi, and K. Grantz, inHigh Temperature Alloys: Theory and Design (TMS-AIME, Warrendale, 1984), p. 125.

    Google Scholar 

  32. A. Engström, L. Höglund, and J. Ågren,Met. Mater. Trans. 25A, 1127 (1994).

    Google Scholar 

  33. M. S. Thompson and J. E. Morral,Acta Metall. 34, 339 (1986).

    Google Scholar 

  34. M. S. Thompson and J. E. Morral,Acta Metall. 34, 2201 (1986).

    Google Scholar 

  35. M. K. Stalker, J. E. Morral and A. D. Romig, Jr.,Met. Trans. 23A 3245 (1992).

    Google Scholar 

  36. M. S. Thompson and J. E. Morral, inHigh Temperature Coatings, M. Khobaib and R. C. Krutenat (eds) (TMS-AIME, Warrendale, 1987), p. 55.

    Google Scholar 

  37. J. E. Morral, M. S. Thompson, and O. F. Devereux,Scripta Metall. 20, 1355 (1986).

    Google Scholar 

  38. J. E. Morral, Y.-H. Son, and M. S. Thompson, inFundamentals and Applications of Ternary Diffusion, G. R. Purdy (ed.) (Pergamon Press, Elmsford, 1990), p. 119.

    Google Scholar 

  39. SINDA/FLUINT, available through COSMIC, The University of Georgia, Athens, GA.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesbitt, J.A. Numerical modeling of high-temperature corrosion processes. Oxid Met 44, 309–338 (1995). https://doi.org/10.1007/BF01046731

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046731

Key Words

Navigation