Skip to main content
Log in

Diffusional analysis of a multiphase oxide scale formed on a Mo-Mo3Si-Mo5-SiB2 alloy

  • Section I: Basic And Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Diffusional analyses were performed to understand the oxidation at 1300 °C of a multiphase Mo-13.2Si-13.2B (at.%) alloy. During oxidation, a protective glass scale formed with an intermediate layer of (Mo+glass) between the base alloy and external glass scale. Compositional profiles across the (Mo+glass) layer and the external glass scale were determined, and interdiffusion fluxes and effective interdiffusion coefficients for the various components were determined by using “MultiDiFlux” software. The motion of the (alloy/Mo+glass) and (Mo+glass/glass) interphase boundaries after passivation was examined. Additionally, vapor-solid diffusion experiments at 1300 °C were carried out with single-phase Mo3Si and T2 specimens in addition to a multiphase Mo-10Si-10B (at.%) alloy. These specimens were exposed to vacuum to induce silicon loss resulting in the formation of a Mo layer. An average effective interdiffusion coefficient of Si in Mo at 1300 °C was estimated from the Mo3Si-vapor couple to be in the order of 8×10−17 m2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Zhao and J.H. Westbrook, Ultrahigh-Temperature Materials for Jet Engines,MRS Bull., 2003,28(9), p 622–626

    Google Scholar 

  2. V. Supatarawanich, D.R. Johnson, and C.T. Liu, Oxidation Behavior of Multiphase Mo-Si-B Alloys,Mater. Sci. Eng. A, 2003,344, p 328–339

    Article  Google Scholar 

  3. M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk, Oxidation Behavior of αMo-Mo3Si-Mo5SiB2 (T2) Three Phase System,Intermetallics, 2002,10, p 225–232

    Article  Google Scholar 

  4. D.M. Berczik, “Method for Enhancing the Oxidation Resistance of a Molybdenum Alloy and a Method of Making a Molybdenum Alloy,” U.S. patent 5595616, 1997

  5. V. Supatarawanich, D.R. Johnson, and C.T. Liu, 2004, Effects of Microstructure on the Oxidation Behavior of Mo-Rich Mo-Si-B Intermetallics,Intermetallics, 1997,12(7–9), p 721–725

    Article  Google Scholar 

  6. J.H. Schneibel, C.T. Liu, D.S. Easton, and C.A. Carmichael, Microstructure and Mechanical Properties of Mo-Mo3Si-Mo5SiB2 Silicides,Mater. Sci. Eng. A, 1999,261, p 78–83

    Article  Google Scholar 

  7. H. Choe, J.H. Schneibel, and R.O. Ritchie, On the Fracture and Fatigue Properties of Mo-Mo3Si-Mo5SiB2 Refractory Intermetallics Alloys at Ambient to Elevated Temperatures (25 °C–1300 °C),Metall. Mater. Trans. A, 2003,34A, p 225–239

    Article  Google Scholar 

  8. D.A. Helmick, G.H. Meier, and F.S. Pettit, The Development of Protective Borosilicate Layers on a Mo-3Si-1B (Weight Percent) Alloy,Metall. Mater. Trans. A,36A, p 3371–3383

  9. C.A. Nunes, R. Sakidja, Z. Dong, and J.H. Perepezko, Liquidus Projection for the Mo-Rich Portion of the Mo-Si-B Ternary System,Intermetallics, 2000,8(4), p 327–337

    Article  Google Scholar 

  10. M.A. Dayananda and L.R. Ram-Mohan, “MultiDiFlux,” https://engineering.purdue.edu/MSE/Fac_Staff/Faculty/dayananda.wshtml, 2006

  11. M.A. Dayananda, Analysis of Multicomponent Diffusion Couples for Interdiffusion Fluxes and Interdiffusion Coefficients,J. Phase Equilib. Diffus., 2005,26, p 441–446

    Article  Google Scholar 

  12. M.A. Dayananda, Average Effective Interdiffusion Coefficients in Binary and Multicomponent Alloys,Defect Diffusion Forum, 1993,95–98, p 521–536

    Google Scholar 

  13. P.C. Tortorici and M.A. Dayananda, Interdiffusion and Diffusion Structure Development in Selected Refractory Metal Silicides,Mater. Sci. Eng. A, 1999,A261, p 64–77

    Google Scholar 

  14. M.A. Dayananda and C.W. Kim, Zero-Flux Planes and Flux Reversals in Cu-Ni- Zn Diffusion Couples,Metall. Trans. A, 1979,10A, p 1333–1339

    Google Scholar 

  15. M.A. Dayananda, Analysis of Concentration Profiles for Fluxes, Diffusion Depths, and Zero-Flux Planes in Multicomponent Diffusion,Metall. Trans. A, 1983,14A, p 1851–1858

    Google Scholar 

  16. M.A. Dayananda, Average Effective Interdiffusion Coefficients and the Matano Plane Composition,Metallurgical and Materials Transactions A, 1996,27A, p 2504–2509

    Article  Google Scholar 

  17. C.W. Kim and M.A. Dayananda, Zero-Flux Planes and Flux Reversals in the Cu-Ni-Zn System at 775 °C,Metall. Trans. A, 1984,15A, p 649–659

    Google Scholar 

  18. M.A. Dayananda and R.E. Grace, Ternary Diffusion in Copper-Zinc-Manganese Alloys,Trans. Metall. Soc. AIME, 1965,233, p 1287–1293

    Google Scholar 

  19. P.T. Carlson, M.A. Dayananda, and R.E. Grace, Diffusion in Ternary Ag-Zn-Cd Solid Solutions,Metall. Trans., 1972,3, p 819–826

    Article  Google Scholar 

  20. L. Onsager, Theories and Problems of Liquid Diffusion,Ann. NY Acad. Sci., 1945,46, p 241–265

    Article  Google Scholar 

  21. V. Supatarawanich, “Oxidation Behavior of Multiphase Mo-Mo3Si-Mo5SiB2 Intermetallics,” PhD Dissertation, Materials Engineering, Purdue University, West Lafayette, IN, 2005, p 125

    Google Scholar 

  22. R.D. Sisson and M.A. Dayananda, Diffusion Structures in Multiphase Cu-Ni-Zn Couples,Metall. Trans., 1972,3, p 647–652

    Article  Google Scholar 

  23. J. Schlichting, Oxygen Transport Through Glass Layers Formed by a Gel Process,J. Non-Cryst. Solids, 1984,63, p 173–181

    Article  Google Scholar 

  24. V. Supatarawanich, 2001, “Effects of Microstructure on the Oxidation Behavior of Multiphase Mo-Si-B Intermetallics,” Master of Science, Materials Engineering, Purdue University, West Lafayette, IN, p 74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dheeradhada, V.S., Johnson, D.R. & Dayananda, M.A. Diffusional analysis of a multiphase oxide scale formed on a Mo-Mo3Si-Mo5-SiB2 alloy. JPED 27, 582–589 (2006). https://doi.org/10.1007/BF02736559

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736559

Keywords

Navigation