Skip to main content
Log in

Polarization contribution to the hydrogen hyperfine structure and phenomenology of the electron-proton interaction

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

In order to understand the significance of the well-known discrepancy of 45 ppm in the hydrogen hyperfine structure we have calculated the polarization correction using an isobar model for the proton, and compared the sensitivity to electron-proton forces of the analysis of the hyperfine splitting with that of the Lamb shift and of electron-proton scattering. A methodological innovation of the calculation is the avoidance of the Rarita-Schwinger formalism for spin 3/2 by the construction of a covariant analytic amplitude from the familiar non-relativistic partial-wave amplitude. It is found that the 3-3 isobar, and by extension higher resonances, are more than an order of magnitude too small to be significant and that the discrepancy is genuine. We consider the introduction of a phenomenological electron-proton interaction term, representing unknown or neglected forces, to account for the discrepancy, and find that this would not necessarily lead to a contradiction with Lamb shift or electron-proton scattering data. We point out that, whatever the cause of the discrepancy, it is likely to be proportional, in percent, to the electron mass, so that it would be roughly 200 times greater in μ-mesic hydrogen (μ-p) than in hydrogen. We strongly encourage a measurement of the hyperfine splitting of μ-mesic hydrogen, of sufficient accuracy to determine whether the discrepancy is common to both systems and proportional to the lepton mass.

Riassunto

Per comprendere il significato della ben nota discrepanza di 45 p.p.m. nella struttura iperfina dell’idrogeno si è calcolata la correzione di polarizzazione facendo uso di un modello isobarico del protone, e si è confrontata la sensibilità alle forze elettrone-protone dell’analisi della separazione iperfina con quella dello spostamento di Lamb e dello scattering elettrone-protone. Una innovazione metodologica del calcolo sta nell’evitare il formalismo di Rarita-Schwinger per lo spin 3/2 con la costruzione a partire dalla familiare ampiezza d’onda parziale non relativistica di un’ampiezza analitica covariante. Si trova che l’isobare 3-3, e per estensione le risonanze più elevate, sono per più di un ordine di grandezza troppo piccole per essere significative e che la discrepanza è genuina. Per render conto della discrepanza, si prende in considerazione l’introduzione di un termine di interazione elettrone-protone fenomenologico, che rappresenta forze ignote o trascurate, e si trova che questo non porterebbe necessariamente ad una contraddizione con i dati dello spostamento di Lamb e dello scattering elettrone-protone. Si mette in rilievo che, qualunque sia la causa della discrepanza, è verosimile e che essa sia proporzionale, in percentuale, alla massa dell’elettrone, di modo che sarebbe grossolanamente 200 volte maggiore nell’idrogeno μ-mesico (μ-p) che nell’idrogeno. Si raccomanda fortemente una misura della separazione iperfine dell’idrogeno μ-mesico, di accuratezza sufficiente per determinare se la discrepanza è comune ad entrambi i sistemi e proporzionale alla massa del leptone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. After the stencils were prepared, it came to our attention that this increase was also pointed out in Yale reportYale Study on High-Intensity Proton Accelerators Internal Report Y. 12, by the Yale design study group, page II.90. We are grateful to Prof.V. Hughes for informing us of the present experimental possibilities of hyper-fine-structure measurements and alternative and more accurate determination of the fine-structure constant.

  2. P. Kusch:Phys. Rev.,100, 1188 (1955); andJ. P. Wittke andR. H. Dicke:Phys. Rev.,103, 620 (1956).

    Article  ADS  Google Scholar 

  3. L. W. Anderson, F. M. Pipkin andJ. C. Baird:Phys. Rev.,120, 1279 (1960).

    Article  ADS  Google Scholar 

  4. S. B. Crampton, D. Kleppner andN. F. Ramsey:Phys. Rev. Lett.,11, 338 (1963).

    Article  ADS  Google Scholar 

  5. A. J. Layzer:Nuovo Cimento,33, 1538 (1964).

    Article  MathSciNet  Google Scholar 

  6. D. Zwanziger:Nuovo Cimento,34, 77 (1964).

    Article  Google Scholar 

  7. Dr.L. Brown informs us that calculations are under way to check the recoil and finite-size effects.

  8. W. E. Cleland, J. M. Bailey, M. Eckhause, V. W. Hughes, R. M. Mobley, R. Prepost andJ. E. Rothberg:Phys. Rev. Lett.,13, 202 (1964). We refer to this letter for the comparison of various theoretical and experimental quantities.

    Article  ADS  Google Scholar 

  9. R. Arnowitt:Phys. Rev.,92, 1002 (1953).

    Article  ADS  Google Scholar 

  10. W. A. Newcomb andE. E. Salpeter:Phys. Rev.,97, 1146 (1955).

    Article  ADS  Google Scholar 

  11. C. Zemach:Phys. Rev.,104, 1771 (1956).

    Article  ADS  Google Scholar 

  12. C. K. Iddings andP. M. Platzman:Phys. Rev.,113, 192 (1959).

    Article  ADS  Google Scholar 

  13. M. Gell-Mann andK. Watson:Ann. Rev. Nucl. Sci.,4, 234 (1954).

    Article  Google Scholar 

  14. M. Gourdin andPh. Salin:Nuovo Cimento,27, 193 (1963).

    Article  Google Scholar 

  15. M. Gourdin andPh. Salin:Nuovo Cimento,27, 309 (1963).

    Article  Google Scholar 

  16. C. K. Iddings:Phys. Rev.,138, B 446 (1965).

    Article  ADS  Google Scholar 

  17. Private communication fromF. Guérin andC. Bouchiat.

  18. C. K. Iddings andP. M. Platzman:Phys. Rev.,115, 919 (1959).

    Article  ADS  Google Scholar 

  19. D. Flamm andW. Kummer:Nuovo Cimento,28, 33 (1963); [eq. (26)]. We have not checked this work.

    Article  Google Scholar 

  20. J. Schwinger:Phys. Rev.,73, 416 (1948);A. Peterman:Helv. Phys. Acta,30, 407 (1957);C. Sommerfeld:Phys. Rev.,107, 328 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  21. N. M. Kroll andF. Pollock:Phys. Rev.,84, 594 (1951);R. Karplus, A. Klein andJ. Schwinger:Phys. Rev.,84, 597 (1951).

    Article  ADS  Google Scholar 

  22. A. J. Layzer:Journ. Math. Phys.,2, 308 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Zwanziger:Phys. Rev.,121, 1128 (1961).

    Article  ADS  Google Scholar 

  24. M. Sternheim:Phys. Rev.,130, 211 (1963).

    Article  ADS  Google Scholar 

  25. This is expounded in greater detail with the present conventions inD. Zwanziger:Phys. Rev.,137, B 1535 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  26. R. F. Stiening, E. Loh andM. Deutsch:Phys. Rev. Lett.,10, 536 (1963).

    Article  ADS  Google Scholar 

  27. R. R. Wilson andJ. S. Levinger:Ann. Rev. Nucl. Sci.,14, 135 (1964).

    Article  ADS  Google Scholar 

  28. S. D. Drell andS. Fubini:Phys. Rev.,113, 741 (1959).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verganelakis, A., Zwanziger, D. Polarization contribution to the hydrogen hyperfine structure and phenomenology of the electron-proton interaction. Nuovo Cim 39, 613–634 (1965). https://doi.org/10.1007/BF02735827

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02735827

Navigation