Skip to main content
Log in

Invariant scalar products and quantization of general poincaré-invariant wave equations

Инвариантные скалярные проиэведения и квантуемость Пуанкаре-инвариа нтных волновых уравнений

  • Published:
Il Nuovo Cimento A (1971-1996)

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

The question of second-quantizing the recently derived most general types of proper Poincaré-invariant Schrödinger wave equations (employing locally covariant wave functions without redundant components and describing arbitrary-spin particles) is considered. As a prelude to carrying out this program the associated relativistically invariant scalar products (with respect to which the Poincaré group is unitary) are determined. Then it is shown that from amongst the infinity of Poincaré-invariantc-number wave equations just two survive the test of second quantization consistent with the microcausality criterion—one being suitable for half-integer spins alone and the other for integer spins only. Our analysis establishes that just the two constraints of proper Poincaré invariance and quantizability lead to the emergence ofseparate T, C, P invariance (in the case of free-field equations) as well as the correct spin-statistics connection.

Riassunto

Si studia la questione della seconda quantizzazione dei tipi più generali, dedotti recentemente, di equazioni d’onda di Schrödinger, invarianti secondo Poincaré, proprie (impiegando funzioni d’onda covarianti localmente senza componenti ridondanti e che descrivono particelle con spin arbitrario). Come preludio all’esecuzione di questo programma si determinano i prodotti scalari associati relativisticamente invarianti (rispetto al quale il gruppo di Poincaré è unitario). Poi si mostra che fra l’infinità di equazioni d’onda di numeroc invarianti secondo Poincaré solo due passano l’esame della seconda quantizzazione consistente con il criterio di microcausalità — una adatta solo per spin seminteri e l’altra per spin interi. La nostra analisi stabilisce che proprio i due vincoli di invarianza propria secondo Poincaré e di quantizabilità portano all’emergenza di invarianzaT, C, P separata (nel caso di equazioni del campo libero) ed anche al corretto collegamento spin-statistica.

Реэюме

Рассматривается вопрос вторичного квантования выведенных недавно наиболее обших типов Пуанкаре-инвариан тных волновых уравнений Щредингера (испольэуюших локально ковариантные волновые функции беэ лищних компонент и описываюших частицы с проиэвольным спином). Сначала определяются релятивистски инвариантные скалярные проиэведения (по отнощению к которым группа Пуанкаре является унитарной). Затем покаэывается, что иэ бесконечного множества Пуанкаре-инвариа нтных е-численных волновых уравнений только два выдерживают проверку вторичного квантования, согласуюшегося с критерием микропричинности, причем, одно иэ них удобно только для полуцелых спинов, а другое только для целых спинов. Нащ аналиэ устанавливает, что именно зти два ограничения собственной Пуанкаре-инвариа нтности и квантуемости приводят к появлениюраэдельной T, C, P инвариантности (в случае уравнений свободных полей), а также правильной свяэи между спином и статистикой.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jayaraman:Nuovo Cimento,13 A, 877 (1973).

    Article  ADS  Google Scholar 

  2. M. Seetharaman, J. Jayaraman andP. M. Mathews:Journ. Math. Phys.,12, 835 (1971).

    Article  ADS  Google Scholar 

  3. P. M. Mathews:Phys. Rev.,143, 978 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  4. P. M. Mathews:Phys. Rev.,143, 985 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  5. P. M. Mathews andS. Ramakrishnan:Nuovo Cimento,50 A, 339 (1967).

    Article  ADS  Google Scholar 

  6. These coincide with the ones picked out by the quantizability criterion (ref. (6,7)) from amongst a general class ofT, C, P symmetricc-number wave equations (ref. (5)) not subjected to invariance under boosts transverse to the momentum direction and also with the ones shown to survive when justTCP (ref. (8)) orP (ref. (9)) (if we neglect a trivial exception in the latter case) alone is demanded along with Poincaré invariance in thec-number theory.

  7. P. M. Mathews:Phys. Rev.,155, 1415 (1967).

    Article  ADS  Google Scholar 

  8. P. M. Mathews:Journ. Math. Phys. Sci. (Madras),1, 197 (1967). See also,P. M. Mathews:Lectures in Theoretical Physics (Boulder Summer Institute, 1969) (New York, 1971).

    Google Scholar 

  9. M. Seetharaman andP. M. Mathews:Journ. Math. Phys.,13, 938 (1972).

    Article  ADS  Google Scholar 

  10. M. Seetharaman, J. Jayaraman andP. M. Mathews:Journ. Math. Phys.,12, 1620 (1971).

    Article  ADS  Google Scholar 

  11. R. Shaw:Nuovo Cimento,35, 1074 (1964).

    Article  Google Scholar 

  12. Implications of manifest covariance are by no means innocuous: for a demonstration (based on group-theoretical arguments) that such nonessential constraints on the form of the wave equation can bring in unintended invariance restrictions in subtle ways, seeP. M. Mathews:Journ. Math. Phys.,11, 1360 (1970).

    Article  ADS  Google Scholar 

  13. For a fairly exhaustive survey of manifestly covariant wave equations, seeE. M. Corson:An Introduction to Tensors, Spinors and Relativistic Wave Equations (New York, 1953);H. Umezawa:Quantum Field Theory (Amsterdam, 1956);Y. Takahashi:An Introduction to Field Quantization (London, 1969).

  14. D. Shay, H. S. Song andR. H. Good jr.:Suppl. Nuovo Cimento,3, 455 (1965).

    Google Scholar 

  15. D. L. Weaver, C. L. Hammer andR. H. Good jr.:Phys. Rev.,135, B 241 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Kemmer:Proc. Roy. Soc., A173, 91 (1939).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Seetharaman, J. Jayaraman andP. M. Mathews:Nucl. Phys.,19 B, 625 (1971).

    ADS  Google Scholar 

  18. S. Weinberg:Phys. Rev.,133, B 1318 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  19. E. P. Wigner:Ann. of Math.,40, 149 (1939).

    Article  ADS  MathSciNet  Google Scholar 

  20. L. L. Foldy:Phys. Rev.,102, 568 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Pauli:Phys. Rev.,58, 716 (1940).

    Article  ADS  Google Scholar 

  22. N. Burgoyne:Nuovo Cimento,8, 607 (1958). See alsoN. Burgoyne:Group Theoretical Concepts and Methods in Elementary Particle Physics, edited byF. Gürsey (New York, 1964).

    Article  MathSciNet  Google Scholar 

  23. P. M. Mathews andM. Seetharaman:Nucl. Phys.,31 B, 551 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaraman, J. Invariant scalar products and quantization of general poincaré-invariant wave equations. Nuov Cim A 14, 343–362 (1973). https://doi.org/10.1007/BF02728958

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728958

Navigation