Skip to main content
Log in

Symplectic Field Theories: Scalar and Spinor Representations

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Using elements of symmetry, as gauge invariance, aspects of field theories represented in symplectic space are introduced and analyzed under physical bases. The states of a system are described by symplectic wave functions, which are associated with the Wigner function. Such wave functions are vectors in a Hilbert space introduced from the cotangent-bundle of the Minkowski space. The symplectic Klein–Gordon and the Dirac equations are derived, and a minimum coupling is considered in order to analyze the Landau problem in phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, L.M., Santana, A.E., Ribeiro, A.: The Cangemi–Jackiw manifold in high dimensions and symplectic structure. Ann. Phys. (N. Y.) 297, 396 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alonso, M.A., Pogosyan, G.S., Wolf, K.B.: Wigner functions for curved spaces. I. On hyperboloids. J. Math. Phys. 43, 5857 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Amorim, R.G.G., Fernandes, M.C.B., Khanna, F.C., Santana, A.E., Vianna, J.D.M.: Non-commutative geometry and symplectic field theory. Phys. Lett. A 361, 464 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Amorim, R.G.G., Khanna, F.C., Santana, A.E., Vianna, J.D.M.: Perturbative symplectic field theory and Wigner function. Phys. A 388, 3771 (2009)

    Article  MathSciNet  Google Scholar 

  5. Amorim, R.G.G., Ulhoa, S., Santana, A.E.: The noncommutative harmonic oscillator based on symplectic representation of Galilei group. Braz. J. Phys. 43, 7885 (2013)

    Article  Google Scholar 

  6. Amorim, R.G.G., Khanna, F.C., Malbouisson, A.P.C., Malbouisson, J.M.C., Santana, A.E.: Realization of the noncommutative Seiber–Witten gauge theory by fields in phase space. Int. J. Mod. Phys. 30, 1550135 (2015)

    Article  ADS  MATH  Google Scholar 

  7. Andrade, M.C.B., Santana, A.E., Vianna, J.D.M.: Poincar-Lie algebra and relativistic phase-space. J. Phys. A Math. Gen. 33, 4015 (2000)

    Article  ADS  MATH  Google Scholar 

  8. Belissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum hall effect. J. Math. Phys. 35, 53 (1994)

    Article  MathSciNet  Google Scholar 

  9. Berkowitz, M.: Exponential approximation for the den-sity matrix and the Wigner’s distribution. Chem. Phys. Lett. 129, 486 (1986)

    Article  ADS  Google Scholar 

  10. Bohm, D., Hiley, B.J.: Nonlocality in quantum theory understood in terms of Einstein’s nonlinear field approach. Found. Phys. 11, 179 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge (1995)

  12. Chountassis, S., Vourdas, A.: Weyl and Wigner func-tions in an extended phase-space formalism. Phys. Rev. A 58, 1794 (1998)

    Article  ADS  Google Scholar 

  13. Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  14. Curtright, T., Zachos, C.: Wigner trajectory charac-teristics in phase space and field theory. J. Phys. A 32, 771 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Curtright, T., Fairlie, D., Zachos, C.: Features of time-independent Wigner functions. Phys. Rev. D 58, 25002 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dayi, O.F., Kelleyane, L.T.: Wigner functions for the Landau problem in noncommutative spaces. Mod. Phys. Lett. A 17, 1937 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. de Gosson, M., Luef, F.: On the usefulness of modulation spaces in deformation quantization. J. Phys. A Math. Theor. 42, 315205 (2009)

  18. de Gosson, M.A.: Extended Weyl calculus and application to the phase space Schrodinger equation. J. Phys. A Math. Gen. 38, 9263 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. de Gosson, M.A.: Semiclassical Propagation of wavepackets for the phase space Schroedinger equation: interpretation in terms of the Feichtinger algebra. J. Phys. A Math. Theor. 41, 095202 (2008)

    Article  ADS  MATH  Google Scholar 

  20. Dito, J.: Star-products and Non-standard Quantization for Klein-Gordon Equation. J. Math. Phys. 33, 791 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dodonov, V.V.: Wigner functions and statistical moments of quantum states with definite parity. Phys. Lett. A 364, 368 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dodonov, V.V., Man’ko, O., Man’ko, V.I.: Multidi-mensional Hermite polynomials and photon distribution for polymode mixed light. Phys. Rev. A 50, 813 (1994)

    Article  ADS  Google Scholar 

  23. Dodonov, V.V., Man’ko, O., Man’ko, V.I.: Photon distribution for one-mode mixed light with a generic gaussian wigner function. Phys. Rev. A 49, 2993 (1994)

    Article  ADS  Google Scholar 

  24. Fernandes, M.C.B., Vianna, J.D.M.: On the Duffin–Kemmer–Petiau algebra and the generalized phase space. Braz. J. Phys. 28, 487 (1999)

    ADS  Google Scholar 

  25. Fernandes, M.C.B., Santana, A.E., Vianna, J.D.M.: Galilean Duffin–Kemmer–Petiau algebra and symplectic structure. J. Phys. A Math. Gen. 36, 3841 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Galetti, D., Piza, A.F.R.T.: Symmetries and time evolution in discrete phase spaces: a soluble model calculation. Phys. A 214, 207 (1995)

    Article  MathSciNet  Google Scholar 

  27. Gurau, R., Malbouisson, A., Rivasseau, V., Tanasa, A.: Non-commutative complete Mellin representation for Feynman amplitudes. Lett. Math. Phys. 81, 161 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Distribution functions in physics: fundamen-tals. Phys. Rep. 106, 121 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ibort, A., Lopez-Yela, A., Man’ko, V.I., Marmo, G., Simoni, A., Sudarshan, E.C.G., Ventriglia, F.: On the tomographic description of classical fields. arXiv:1202.3275 [math-ph] (2012)

  30. Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., Ventriglia, F.: An introduction to the tomography picture of quantum mechanics. Phys. Scr. 79, 065013 (2009)

    Article  ADS  MATH  Google Scholar 

  31. Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., Ventriglia, F.: On the tomography picture of quantum mechanics. Phys. Lett. A 374, 2614 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Isar, A.: Wigner distribution and entropy of the damped harmonic oscillator within the theory of open quantum systems. arXiv:hep-th/9404129 (1994)

  33. Khanna, F.C., Malbouisson, A.P.C., Malbouis-son, J.M.C., Santana, A.E.: Thermal Quantum Field The-ory: Algebraic Aspects and Applications. World Scientific Publications, Singapore (2009)

    Book  Google Scholar 

  34. Kim, Y.S., Noz, M.E.: Phase Space Picture and Quan-tum Mechanics-Group Theoretical Approach. World Scientific Publications, Singapore (1991)

    Book  Google Scholar 

  35. Leibfried, D., Meekhof, D.M., King, B.E., Monroe, C., Itano, W.M., Wineland, D.J.: Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 77, 4281 (1996)

    Article  ADS  Google Scholar 

  36. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Olavo, L.S.F.: Foundations of quantum mechanics: connection with stochastic processes. Phys. Rev. A 61, 052109 (2000)

  38. Olavo, L.S.F., Lapas, L., Figueiredo, A.D.: Foundations of quantum mechanics: the Langevin equations for QM. Ann. Phys. (N. Y.) 327, 1391 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Oliveira, M.D., Fernandes, M.C.B., Khanna, F.C., Santana, A.E., Vianna, J.D.M.: Symplectic quantum mechanics. Ann. Phys. (N. Y.) 312, 492 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Placido, H.Q., Santana, A.E.: Quantum generalized Vlasov equation. Phys. A 220, 552 (1995)

    Article  MathSciNet  Google Scholar 

  41. Rodrigues, W.A., Oliveira, E.C.: The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach. Springer, New York (2017)

    MATH  Google Scholar 

  42. Santana, A.E., Neto, A.M., Vianna, J.D.M., Khanna, F.C.: Symmetry groups, density-matrix equations and covariant Wigner functions. Phys. A 280, 405 (2001)

    Article  Google Scholar 

  43. Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 9909, 32 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement ofthe Wigner Distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244 (1993)

    Article  ADS  Google Scholar 

  45. Smolyansky, S.A., Prozorkevich, A.V., Maino, G., Mashnic, S.G.: A covariant generalization of the real time green’s functions method in the theory of kinetic equations. Ann. Phys. (N. Y.) 277, 193 (1999)

    Article  ADS  MATH  Google Scholar 

  46. Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Torres-Vega, G., Morales-Guzman, J. D., Zuniga-Segundo, A.: Special functions in phase space: Mathieu functions. J. Phys. A Math. Gen. 31, 6725 (1998)

  48. Torres-Vega, G., Segundo, A. Zufiiga, Morales-Guzman, J. D.: Special functions and quantum mechanics in phase space: airy functions. Phys. Rev. A 53, 3792 (1996)

  49. Torres-Vega, G., Frederick, J.H.: Quantum mechanics in phase space: new approaches to the correspondence principle. J. Chem. Phys. 93, 8862 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  50. van Hove, L.: Sur certaines representations unitaires d’un groupe infini de transformations. Proc. R. Acad. Sci. 26, 1 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Weyl, H.: Quantenmechanik und Gruppentheorie. Z. Phys. 46, 1 (1927)

    Article  ADS  MATH  Google Scholar 

  52. Wigner, E.P.: On the quantum correction for thermo-dynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  53. Zachos, C.K.: Deformation quantization: quantum mechanics lives and works in phase-space. Int. J. Mod. Phys. A 17, 297 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CNPq of Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademir E. Santana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, C., Tenser, M.R., Amorim, R.G.G. et al. Symplectic Field Theories: Scalar and Spinor Representations. Adv. Appl. Clifford Algebras 28, 27 (2018). https://doi.org/10.1007/s00006-018-0840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0840-4

Keywords

Navigation