Skip to main content
Log in

Structural and functional analysis of rice genome

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Rice is an excellent system for plant genomics as it represents a modest size genome of 430 Mb. It feeds more than half the population of the world. Draft sequences of the rice genome, derived by whole-genome shotgun approach at relatively low coverage (4-6 X), were published and the International Rice Genome Sequencing Project (IRGSP) declared high quality (> 10 X), genetically anchored, phase 2 level sequence in 2002. In addition, phase 3 level finished sequence of chromosomes 1, 4 and 10 (out of 12 chromosomes of rice) has already been reported by scientists from IRGSP consortium. Various estimates of genes in rice place the number at >50,000. Already, over 28,000 full-length cDNAs have been sequenced, most of which map to genetically anchored genome sequence. Such information is very useful in revealing novel features of macroand micro-level synteny of rice genome with other cereals. Microarray analysis is unraveling the identity of rice genes expressing in temporal and spatial manner and should help target candidate genes useful for improving traits of agronomic importance. Simultaneously, functional analysis of rice genome has been initiated by marker-based characterization of useful genes and employing functional knock-outs created by mutation or gene tagging. Integration of this enormous information is expected to catalyze tremendous activity on basic and applied aspects of rice genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G.et al. 2000 The genome sequence ofDrosophila melanogaster.Science 287, 2185–2195.

    Article  PubMed  Google Scholar 

  • Agrawal G. K., Yamazaki M., Kobayashi M., Hirochika R., Miyao A. and Hirochika H. 2001 Screening of the rice viviparous mutants generated by endogenous retrotransposonTos1 7 insertion. Tagging of a zeaxanthin epoxidase gene and a novelOsTATC gene.Plant Physiol. 125, 1248–1257.

    Article  PubMed  CAS  Google Scholar 

  • Akagi H., Yokozeki Y., Inagaki I. A. and Fujimura T. 1996 Microsatellite DNA markers for rice chromosomes.Theor. Appl. Genet. 93, 1071–1077.

    Article  CAS  Google Scholar 

  • Albar L., Ndjiondjop M. N., Esshak Z., Berger A., Pinel A., Jones M.et al. 2003 Fine genetic mapping of a gene required for rice yellow mottle virus cell-to-cell movement.Theor. Appl. Genet. 107, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Alonso J. M., Stepanova A. N., Leisse T. J., Kim C. J., Chen H., Shinn P.et al. 2003 Genome-wide insertional mutagenesis ofArabidopsis thaliana.Science 301, 653–657.

    Article  PubMed  Google Scholar 

  • Antonio B. A., Emoto M., Wu J., Ashikawa I., Umehara Y., Kurata N.et al. 1996 Physical mapping of rice chromosomes 8 and 9 with YAC clones.DNA Res. 3, 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Antonio B. A., Sakata K. and Sasaki T. 2000 Rice at the forefront of plant genome informatics.Genome Infor. 11, 3–11.

    CAS  Google Scholar 

  • Apisitwanich S. 1999 Genomicin situ hybridization in rice.Kasetsart J. (Nat. Sci.) 33, 185–190.

    Google Scholar 

  • Arber W. 2002 Roots, strategies and prospects for functional genomics.Curr. Sci. 83, 826–828.

    CAS  Google Scholar 

  • Ashikari M. and Matsuoka M. 2002 Application of rice genomics to plant biology and breeding.Bot. Bull. Acad. Sin. 43, 1–11.

    CAS  Google Scholar 

  • Ashikari M., Wu J., Yano M., Sasaki T. and Yoshimura A. 1999 Rice gibberellin-insensitive dwarf mutant geneDwarf 1 encodes the alpha-subunit of GTP-binding protein.Proc. Natl. Acad. Sci. USA 96, 10284–10289.

    Article  PubMed  CAS  Google Scholar 

  • Ashikawa I., Kurata N., Nagamura Y. and Minobe Y. 1994 Cloning and mapping of telomere-associated sequences from rice.DNA Res. 1, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Azpiroz-Leehan R. and Feldmann K. A. 1997 T-DNA insertion mutagenesis inArabidopsis: going back and forth.Trends Genet. 13, 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Baba T., Katagiri S., Tanoue H., Tanaka R., Chiden Y., Saji S.et al. 2000 Construction and characterization of rice genomic libraries: PAC library ofjaponica variety, nipponbare and BAC library ofindica variety, Kasalath.Bulletin of the NIAR 14, 41–49.

    CAS  Google Scholar 

  • Babu P. R., Sekhar A. C., Ithal N., Markandeya G. and Reddy A. R. 2002 Annotation and BAC/PAC localization of nonredundant ESTs from drought-stressed seedlings of anindica rice.J. Genet. 81, 25–44.

    PubMed  CAS  Google Scholar 

  • Barry G. F. 2001 The use of the Monsanto draft rice genome sequence in research.Plant Physiol. 125, 1164–1165.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen J. 2002 Opening the door to comparative plant biology.Science 296, 60–63.

    Article  PubMed  Google Scholar 

  • Bennetzen J. L. 2000 Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions.Plant Cell 12, 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen J. L. and Ma J. 2003 The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis.Curr. Opin. Plant Biol. 6, 128–133.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen J. L. and Ramakrishna W. 2002 Numerous small rearrangements of gene content, order and orientation differentiate grass genomes.Plant Mol. Biol. 48, 821–827.

    Article  PubMed  CAS  Google Scholar 

  • Blanc G., Barakat A., Guyot R., Cooke R. and Delseny M. 2000 Extensive duplication and reshuffling in theArabidopsis genome.Plant Cell 12, 1093–1101.

    Article  PubMed  CAS  Google Scholar 

  • Bowers J. E., Chapman B. A., Rong J. and Paterson A. H. 2003 Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events.Nature 422, 433–438.

    Article  PubMed  CAS  Google Scholar 

  • Brent R. 2000 Genomic biology.Cell 100, 169–183.

    Article  PubMed  CAS  Google Scholar 

  • Bryan G. T., Wu K. S., Farrall L., Jia Y., Hershey H. P., McAdams S. A.et al. 2000 A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance genePi-ta.Plant Cell 12, 2033–2045.

    Article  PubMed  CAS  Google Scholar 

  • Buell C. R. 2002a Current status of the sequence of the rice genome and prospects for finishing the first monocot genome.Plant Physiol. 130, 1585–1586.

    Article  PubMed  CAS  Google Scholar 

  • Buell C. R. 2002b Obtaining the sequence of the rice genome and lessons learned along the way.Trends Plant Sci. 7, 538–542.

    Article  PubMed  CAS  Google Scholar 

  • Bureau T. E., Ronald P. C. and Wessler S. R. 1996 A computerbased systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes.Proc. Natl. Acad. Sci. USA 93, 8524–8529.

    Article  PubMed  CAS  Google Scholar 

  • Burge C. and Karlin S. 1997 Prediction of complete gene structures in human genomic DNA.J. Mol. Biol. 268, 78–94.

    Article  PubMed  CAS  Google Scholar 

  • Burke D. T., Carle G. F. and Olson M. V. 1987 Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors.Science 236, 806–812.

    Article  PubMed  CAS  Google Scholar 

  • Causse M. A., Fulton T. M., Cho Y. G., Ahn S. N., Chunwongse J., Wu K.et al. 1994 Saturated molecular map of the rice genome based on an interspecific backcross population.Genetics 138, 1251–1274.

    PubMed  CAS  Google Scholar 

  • Chao Y.-T., Su C.-L., Chow T.-Y., Lee P.-F., Chung C.-I., Huang J.-J.et al. 2003TEOS1, a novel transposable element family fromOryza sativa.Bot. Bull. Acad. Sin. 44, 1–11.

    CAS  Google Scholar 

  • Chen M., Presting G., Barbazuk W. B., Goicoechea J. L., Blackmon B., Fang G.et al. 2002 An integrated physical and genetic map of the rice genome.Plant Cell 14, 537–545.

    Article  PubMed  CAS  Google Scholar 

  • Chen S., Jin W., Wang M., Zhang F., Zhou J., Jia Q.et al. 2003 Distribution and characterization of over 1000 T-DNA tags in rice genome.Plant J. 36, 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Chen X., Temnykh S., Xu Y., Cho Y. G. and McCouch S. R. 1997 Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.).Theor. Appl. Genet. 95, 553–567.

    Article  CAS  Google Scholar 

  • Cheng Z., Buell C. R., Wing R. A., Gu M. and Jiang J. 2001a Toward a cytological characterization of the rice genome.Genome Res. 11, 2133–2141.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z., Dong F., Langdon T., Ouyang S., Buell C. R., Gu M.et al. 2002 Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon.Plant Cell 14, 1691–1704.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z., Presting G. G., Buell C. R., Wing R. A. and Jiang J. 2001b High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice.Genetics 157, 1749–1757.

    PubMed  CAS  Google Scholar 

  • Chin H. G., Choe M. S., Lee S.-H., Park S. H., Koo J. C., Kim N. Y.et al. 1999 Molecular analysis of rice plants harboring anAc/Ds transposable element-mediated gene trapping system.Plant J. 19, 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Collins F. S., Green E. D., Guttmacher A. E. and Guyer M. S. 2003a A vision for the future of genomics research.Nature 422, 835–847.

    Article  PubMed  CAS  Google Scholar 

  • Collins F. S., Morgan M. and Patrinos A. 2003b The human genome project: lessons from large-scale biology.Science 300, 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Cooper B., Clarke J. D., Budworth P., Kreps J., Hutchison D., Park S.et al. 2003 A network of rice genes associated with stress response and seed development.Proc. Natl. Acad. Sci. USA 100, 4945–4950.

    Article  PubMed  CAS  Google Scholar 

  • Cyranoski D. 2003 Rice genome: A recipe for revolution?Nature 422, 796–798.

    Article  PubMed  CAS  Google Scholar 

  • de Jong J. H., Fransz P. and Zabel P. 1999 High resolution FISH in plants-techniques and applications.Trends Plant Sci. 4, 258–263.

    Article  Google Scholar 

  • Delcher A. L., Kasif S., Fleischmann R. D., Peterson J., White O. and Salzberg S. L. 1999 Alignment of whole genomes.Nucl. Acids Res. 27, 2369–2376.

    Article  PubMed  CAS  Google Scholar 

  • Delseny M. 2003 Towards an accurate sequence of the rice genome.Curr. Opin. Plant Biol. 6, 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Delseny M., Salses J., Cooke R., Sallaud C., Regad F., Lagoda P.et al. 2001 Rice genomics: present and future.Plant Physiol. Biochem. 39, 323–334.

    Article  Google Scholar 

  • Devos K. M., Beales J., Nagamura Y. and Sasaki T. 1999Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide?Genome Res. 9, 825–829.

    Article  PubMed  CAS  Google Scholar 

  • Devos K. M. and Gale M. D. 2000 Genome relationships: the grass model in current research.Plant Cell 12, 637–646.

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J., Ramakrishna W., Sanmiguel P. J., Busso C. S., Yan L., Shiloff B. A.et al. 2001 Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes.Plant Physiol. 125, 1342–1353.

    Article  PubMed  CAS  Google Scholar 

  • Duggan D. J., Bittner M., Chen Y., Meltzer P. and Trent J. M. 1999 Expression profiling using cDNA microarrays.Nat. Genet. 21, 10–14.

    Article  PubMed  CAS  Google Scholar 

  • Eckardt N. A. 2000 Sequencing the rice genome.Plant Cell 12, 2011–2017.

    Article  PubMed  CAS  Google Scholar 

  • Enoki H., Izawa T., Kawahara M., Komatsu M., Koh S., Kyozuka J.et al. 1999Ac as a tool for the functional genomics of rice.Plant J. 19, 605–613.

    Article  PubMed  CAS  Google Scholar 

  • Ewing B. and Green P. 1998 Base-calling of automated sequencer traces using PHRED. II. Error probabilities.Genome Res. 8, 186–194.

    PubMed  CAS  Google Scholar 

  • Ewing B., Hillier L., Wendl M. C. and Green P. 1998 Base-calling of automated sequencer traces using PHRED. I. Accuracy assessment.Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  • Feng Q., Zhang Y., Hao P., Wang S., Fu G., Huang Y.et al. 2002 Sequence and analysis of rice chromosome 4.Nature 420, 316–320.

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C. and Keller B. 2002 Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution.Ann. Bot. 89, 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Fischer K. S., Barton J., Khush G. S., Leung H. and Cantrell R. 2000 Collaborations in rice.Science 290, 279–280.

    Article  PubMed  CAS  Google Scholar 

  • Foote T., Roberts M., Kurata N., Sasaki T. and Moore G. 1997 Detailed comparative mapping of cereal chromosome regions corresponding to thePh1 locus in wheat.Genetics 147, 801–807.

    PubMed  CAS  Google Scholar 

  • Fortna A. and Gardiner K. 2001 Genomic sequence analysis tools: a user’s guide.Trends Genet. 17, 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Freeling M. 2001 Grasses as a single genetic system: reassessment 2001.Plant Physiol. 125, 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  • Fukui K. and Ohmido N. 2000 Rice genome research: an alternative approach based on molecular cytology. InGenomes (ed. J. P. Gustafson), pp. 109–121. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Fukui K., Shishido R. and Kinoshita T. 1997 Identification of rice D-genome chromosomes by genomicin situ hybridization.Theor.Appl. Genet. 95, 1239–1245.

    Article  CAS  Google Scholar 

  • Fukuoka S., Inoue T., Miyao A., Monna L., Zhong H. S., Sasaki T.et al. 1994 Mapping of sequence-tagged sites in rice by single strand conformation polymorphism.DNA Res. 1, 271–277.

    Article  PubMed  CAS  Google Scholar 

  • Gale M. D. and Devos K. M. 1998a Comparative genetics in the grasses.Proc. Natl. Acad. Sci. USA 95, 1971–1974.

    Article  PubMed  CAS  Google Scholar 

  • Gale M. D. and Devos K. M. 1998b Plant comparative genetics after 10 years.Science 282, 656–659.

    Article  PubMed  CAS  Google Scholar 

  • Gerstein M. and Jansen R. 2000 The current excitement in bioinformatics-analysis of whole-genome expression data: how does it relate to protein structure and function.Curr. Opin. Struct. Biol. 10, 574–584.

    Article  PubMed  CAS  Google Scholar 

  • Goff S. A. 1999 Rice as a model for cereal genomics.Curr. Opin. Plant Biol. 2, 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Goff S. A., Ricke D., Lan T. H., Presting G., Wang R., Dunn M.et al. 2002 A draft sequence of the rice genome (Oryza sativa L. ssp.japonica.Science 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Gordon D., Abajian C. and Green P. 1998 CONSED: a graphical tool for sequence finishing.Genome Res. 8, 195–202.

    PubMed  CAS  Google Scholar 

  • Grant D., Cregan P. and Shoemaker R. C. 2000 Genome organization in dicots: genome duplication inArabidopsis and synteny between soybean andArabidopsis.Proc. Natl. Acad. Sci. USA 97, 4168–4173.

    Article  PubMed  CAS  Google Scholar 

  • Greco R., Ouwerkerk P. B., Taal A. J., Favalli C., Beguiristain T., Puigdomenech P.et al. 2001 Early and multipleAc transpositions in rice suitable for efficient insertional mutagenesis.Plant Mol. Biol. 46, 215–227.

    Article  PubMed  CAS  Google Scholar 

  • Guerinot M. L. 2000 The green revolution strikes gold.Science 287, 241–242.

    Article  PubMed  CAS  Google Scholar 

  • Guo H. and Moose S. P. 2003 Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution.Plant Cell 15, 1143–1158.

    Article  PubMed  CAS  Google Scholar 

  • Hamer L., Dezwaan T. M., Montenegro-Chamorro M. V., Frank S. A. and Hamer J. E. 2001 Recent advances in large-scale transposon mutagenesis.Curr. Opin. Chem. Biol. 5, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Hammond S. M., Caudy A. A. and Hannon G. J. 2001 Post-transcriptional gene silencing by double-stranded RNA.Nat. Rev. Genet. 2, 110–119.

    Article  PubMed  CAS  Google Scholar 

  • Han B. and Xue Y. 2003 Genome-wide intraspecific DNA-sequence variations in rice.Curr. Opin. Plant. Biol. 6, 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Hannon G. J. 2002 RNA interference.Nature 418, 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Harris S. B. 2002 Virtual rice: Japan sets up the rice simulator project to create anin silico rice plant.EMBO Rep. 3, 511–513.

    Article  PubMed  CAS  Google Scholar 

  • Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y.et al. 1998 A high-density rice genetic linkage map with 2275 markers using a single F2 population.Genetics 148, 479–494.

    PubMed  CAS  Google Scholar 

  • Heng H. H., Spyropoulos B. and Moens P. B. 1997 FISH technology in chromosome and genome research.BioEssays 19, 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Hieter P. and Boguski M. 1997 Functional genomics: it’s all how you read it.Science 278, 601–602.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H. 1997 Retro transposons of rice: their regulation and use for genome analysis.Plant Mol. Biol. 35, 231–240.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H. 1999 Retrotransposon of rice as a tool for forward and reverse genetics. InMolecular Biology of Rice (ed. K. Shimamoto), pp. 43–58. Springer-Verlag, Tokyo.

    Google Scholar 

  • Hirochika H. 2001a Contribution of theTos17 retrotransposon to rice functional genomics.Curr. Opin. Plant Biol. 4, 118–122.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H., Miyao A., Yamazaki M., Takeda S., Abe K., Hirochika R.et al. 2001b Retrotransposons of rice as a tool for the functional analysis of genes. InRice Genetics IV. Proceedings of the Fourth International Rice Genetics Symposium, 22–27 October 2000 (ed. G. S. Khush, D. S. Brar and B. Hardy), pp. 279–292. Science Publishers, Inc, New Delhi (India) and International Rice Research Institute, Los Banos (Philippines).

    Google Scholar 

  • Hirochika H., Otsuki H., Yoshikawa M., Otsuki Y., Sugimoto K. and Takeda S. 1996 Autonomous transposition of the tobacco retrotransposonTto1 in rice.Plant Cell 8, 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Hohn B. and Puchta H. 2003 Some like it sticky: targeting of the rice geneWaxy.Trends Plant Sci. 8, 51–53.

    Article  PubMed  CAS  Google Scholar 

  • Holzberg S., Brosio P., Gross C. and Pogue G. P. 2002 Barley stripe mosaic virus-induced gene silencing in a monocot plant.Plant J. 30, 315–327.

    Article  PubMed  CAS  Google Scholar 

  • Inada D. C., Bashir A., Lee C., Thomas B. C., Ko C., Goff S. A.et al. 2003 Conserved noncoding sequences in the grasses.Genome Res. 13, 2030–2041.

    Article  PubMed  CAS  Google Scholar 

  • Ioannou P. A., Amemiya C. T., Garnes J., Kroisel P. M., Shizuya H., Chen C.et al. 1994 A new bacteriophage P1-derived vector for the propagation of large human DNA fragments.Nat. Genet. 6, 84–89.

    Article  PubMed  CAS  Google Scholar 

  • Inoue T., Zhong H. S., Miyao A., Ashikawa I., Monna L., Fukuoka S.et al. 1994 Sequence-tagged sites (STSs) as standard landmarkers in the rice genome.Theor. Appl. Genet. 89, 728–734.

    Article  CAS  Google Scholar 

  • Iwata N. 1986 The relationship between cytologically identified chromosomes and linkage groups in rice. InRice Genetics. Proceedings of the International Rice Genetics Symposium, 27–31 May 1985, pp. 229–238. International Rice Research Institute Los Banos (Philippines).

  • Izawa T., Miyazaki C., Yamamoto M., Terada R., Iida S. and Shimamoto K. 1991 Introduction and transposition of the maize transposable elementAc in rice (Oryza sativa L.).Mol. Gen. Genet. 227, 391–396.

    Article  PubMed  CAS  Google Scholar 

  • Izawa T. and Shimamoto K. 1996 Becoming a model plant: the importance of rice to plant science.Trends Plant Sci. 1, 95–99.

    Article  Google Scholar 

  • Jeon J. S., Chen D., Yi G. H., Wang G. L. and Ronald P. C. 2003 Genetic and physical mapping ofPi5(t), a locus associated with broad-spectrum resistance to rice blast.Mol. Genet. Genomics 269, 280–289.

    PubMed  CAS  Google Scholar 

  • Jeon J.-S., Lee S., Jung K.-H., Jun S.-H., Jeong D.-H., Lee J.et al. 2000 T-DNA insertional mutagenesis for functional genomics in rice.Plant J. 22, 561–570.

    Article  PubMed  CAS  Google Scholar 

  • Jeong D.-H., An S., Kang H.-G., Moon S., Han J.-J., Park S.et al. 2002 T-DNA insertional mutagenesis for activation tagging in rice.Plant Physiol. 130, 1636–1644.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J., Gill B. S., Wang G.-L., Ronald P. C. and Ward D. C. 1995 Metaphase and interphase fluorescencein situ hybridization mapping of the rice genome with bacterial artificial chromosomes.Proc. Natl. Acad. Sci. USA 92, 4487–4491.

    Article  PubMed  CAS  Google Scholar 

  • Jiang N., Bao Z., Temnykh S., Cheng Z., Jiang J., Wing R. A.et al. 2002Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice.Genetics 161, 1293–1305.

    PubMed  CAS  Google Scholar 

  • Jiang N., Bao Z., Zhang X., Hirochika H., Eddy S. R., McCouch S. R.et al. 2003 An active DNA transposon family in rice.Nature 421, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Karlowski W. M., Schoof H., Janakiraman V., Stuempflen V. and Mayer K. F. X. 2003 MOsDB: an integrated information resource for rice genomics.Nucl. Acids Res. 31, 190–192.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K.et al. 2001 Gene expression profiles during the initial phase of salt stress in rice.Plant Cell 13, 889–905.

    Article  PubMed  CAS  Google Scholar 

  • Keller B. and Feuillet C. 2000 Colinearity and gene density in grass genomes.Trends Plant Sci. 5, 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Kersten B., Burkle L., Kuhn E. J., Giavalisco P., Konthur Z., Lueking A.et al. 2002 Large-scale plant proteomics.Plant Mol. Biol. 48, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Khush G. S. 1997 Origin, dispersal, cultivation and variation of rice.Plant Mol. Biol. 35, 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Khush G. S. and Brar D. S. 2001 Rice genetics from Mendel to functional genomics. InRice Genetics IV. Proceedings of the Fourth International Rice Genetics Symposium, 22–27 October 2000 (ed. G. S. Khush, D. S. Brar and B. Hardy), pp. 3–25. Science Publishers, Inc., New Delhi (India) and International Rice Research Institute, Los Banos (Philippines).

    Google Scholar 

  • Khush G. S. and Singh R. J. 1985 Relationships between linkage groups and cytologically identifiable chromosomes of rice. InRice Genetics. Proceedings of the International Rice Genetics Symposium, 27–31 May 985, pp. 239–248. Island Publishing House, Inc, Manila, Philippines.

    Google Scholar 

  • Khush G. S., Singh K., Ishii T., Parco A., Huang N., Brar D. S.et al. 1996 Centromere mapping and orientation of the cytological, classical and molecular linkage maps of rice. InRice Genetics III. Proceedings of the Third International Rice Genetics Symposium, 16–20 October 1995 (ed. G. S. Khush), pp. 57–75. International Rice Research Institute, Los Banos (Philippines).

    Google Scholar 

  • Kikuchi K., Terauchi K., Wada M. and Hirano H.-Y. 2003 The plant MITEmPing is mobilized in anther culture.Nature 421, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Kilian A., Chen J., Han F., Steffenson B. and Kleinhofs A. 1997 Towards map-based cloning of the barley stem rust resistance genesRpg1 andrpg4 using rice as an intergenomic cloning vehicle.Plant Mol. Biol. 35, 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Kleffe J., Hermann K., Vahrson W., Wittig B. and Brendel V. 1996 Logitlinear models for the prediction of splice sites in plant pre-mRNA sequences.Nucl. Acids Res. 24, 4709–4718.

    Article  PubMed  CAS  Google Scholar 

  • Klein P. E., Klein R. R., Vrebalov J. and Mullet J. E. 2003 Sequence-based alignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and one major chromosomal rearrangement.Plant J. 34, 605–621.

    Article  PubMed  CAS  Google Scholar 

  • Klöti A. and Potrykus I. 1999 Rice improvement by genetic transformation. InMolecular Biology of Rice (ed. K. Shimamoto), pp. 283–301. Springer, Tokyo.

    Google Scholar 

  • Koike K., Yoshino K., Sue N., Umehara Y., Ashikawa I., Kurata N.et al. 1997 Physical mapping of rice chromosomes 4 and 7 using YAC clones.DNA Res. 4, 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Kojima S., Takahashi Y., Kobayashi Y., Monna L., Sasaki T., Araki T.et al. 2002Hd3a, a rice ortholog of theArabidopsis FT gene, promotes transition to flowering downstream ofHd1 under short-day conditions.Plant Cell Physiol. 43, 1096–1105.

    Article  PubMed  CAS  Google Scholar 

  • Kowalski S. P., Lan T.-H., Feldmann K. A. and Paterson A. H. 1994 Comparative mapping ofArabidopsis thaliana andBrassica oleracea chromosomes reveals islands of conserved organization.Genetics 138, 499–510.

    PubMed  CAS  Google Scholar 

  • Krysan P. J., Young J. C. and Sussman M. R. 1999 T-DNA as an insertional mutagen inArabidopsis.Plant Cell 11, 2283–2290.

    Article  PubMed  CAS  Google Scholar 

  • Ku H. M., Vision T., Liu J. and Tanksley S. D. 2000 Comparing sequenced segments of the tomato andArabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny.Proc. Natl. Acad. Sci. USA 97, 9121–9126.

    Article  PubMed  CAS  Google Scholar 

  • Kurata N., Nagamura Y., Yamamoto K., Harushima Y., Sue N., Wu J.et al. 1994 A 300 kilobase interval genetic map of rice including 883 expressed sequences.Nat. Genet. 8, 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Kurata N., Umehara Y., Tanoue H. and Sasaki T. 1997 Physical mapping of the rice genome with YAC clones.Plant Mol. Biol. 35, 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U. 1998 Comparative mapping betweenArabidopsis thaliana andBrassica nigra indicates thatBrassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements.Genetics 150, 1217–1228.

    PubMed  CAS  Google Scholar 

  • Lee S., Kim J. -Y. Kim S. -H., Kim S. -J., Lee K., Han S.-K.et al. 2004 Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice.Plant Sci. 166, 69–79.

    Article  CAS  Google Scholar 

  • Leung H., Wu C., Baraoidan M., Bordeos A., Ramos M., Madamba, S.et al. 2001 Deletion mutants for functional genomics: progress in phenotyping, sequence assignment and database development. InRice Genetics IV. Proceedings of the Fourth International Rice genetics Symposium, 22–27 October 2000 (ed. G. S. Khush, D. S. Brar and B. Hardy), pp. 239–251. Science Publishers, Inc. New Delhi (India), International Rice Research Institute Los Baños (Philippines).

    Google Scholar 

  • Lewis S., Ashburner M. and Reese M. G. 2000 Annotating eukaryote genomes.Curr. Opin. Struct. Biol. 10, 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Li C. B., Zhang D. M., Ge S. and Hong D. Y. 2000 Identification of genomic constitution of three tetraploidOryza species through two-probe genomicin situ hybridization.International Rice Research Notes 25, 19–22.

    Google Scholar 

  • Liu D., Zhang S., Fauquet C. and Crawford N. M. 1999 TheArabidopsis transposonTag1 is active in rice, undergoing germinal transposition and restricted, late somatic excision.Mol. Gen. Genet. 262, 413–420.

    Article  PubMed  CAS  Google Scholar 

  • Liu H., Sachidanandam R. and Stein L. 2001 Comparative genomics between rice andArabidopsis shows scant collinearity in gene order.Genome Res. 11, 2020–2026.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone K. and Rieseberg L. H. 2002 Rice genomes: a grainy view of future evolutionary research.Curr. Biol. 12, R470-R471.

    Article  PubMed  CAS  Google Scholar 

  • Lowe T. M. and Eddy S. R. 1997 tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence.Nucl. Acids Res. 25, 955–964.

    Article  PubMed  CAS  Google Scholar 

  • Lukowitz W., Gillmor C. S. and Scheible W. R. 2000 Positional cloning inArabidopsis. Why it feels good to have a genome initiative working for you.Plant Physiol. 123, 795–805.

    Article  PubMed  CAS  Google Scholar 

  • Maclean J. L., Dawe D. C., Hardy B. and Hettel G. P. 2002 Rice almanac. Los Baños (Phillippines): International Rice Research Institute, Bouaké (CÔte d’Ivoire): West Africa Rice Development Association, Cali (Colombia): International Center for Tropical Agriculture, Rome (Italy): Food and Agriculture Organization, pp. 253.

    Google Scholar 

  • Maheshwari S. C., Maheshwari N. and Sopory S. K. 2001 Genomics, DNA chips and a revolution in plant biology.Curr. Sci. 80, 252–261.

    CAS  Google Scholar 

  • Mao L., Wood T. C., Yu Y., Budiman M. A., Tomkins J., Woo S.et al. 2000 Rice transposable elements: a survey of 73, 000 sequence-tagged-connectors.Genome Res. 10, 982–990.

    Article  PubMed  CAS  Google Scholar 

  • Mardis E., McPherson J., Martienssen R., Wilson R. K. and McCombie W. R. 2002 What is finished and why does it matter.Genome Res. 12, 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Marra M. A., Hillier L. and Waterston R. H. 1998 Expressed sequence tags-ESTablishing bridges between genomes.Trends Genet. 14, 4–7.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R.et al. 1993 Map-based cloning of a protein kinase gene conferring disease resistance in tomato.Science 262, 1432–1436.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H., Nirasawa S. and Terauchi R. 1999 Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE).Plant J. 20, 719–726.

    Article  PubMed  CAS  Google Scholar 

  • Mayer K., Murphy G., Tarchini R., Wambutt R., Volckaert G., Pohl T.et al. 2001 Conservation of microstructure between a sequenced region of the genome of rice and multiple segments of the genome ofArabidopsis thaliana.Genome Res. 11, 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  • McCallum C. M., Comai L., Greene E. A. and Henikoff S. 2000 Targeting induced local lesions IN genomes (TILLING) for plant functional genomics.Plant Physiol. 123, 439–442.

    Article  PubMed  CAS  Google Scholar 

  • McCouch S. R., Kochert G., Yu Z. H., Wang Z. Y., Khush G. S., Coffman W. R.et al. 1988 Molecular mapping of rice chromosomes.Theor. Appl. Genet. 76, 815–829.

    Article  CAS  Google Scholar 

  • McCouch S. R., Teytelman L., Xu Y., Lobos K. B., Clare K., Walton M.et al. 2002 Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.).DNA Res. 9, 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Meinke D. W., Cherry J. M., Dean C., Rounsley S. D. and Koornneef M. 1998Arabidopsis thaliana: a model plant for genome analysis.Science 282, 662–682.

    Article  PubMed  CAS  Google Scholar 

  • Mewes H. W., Albermann K., Bahr M., Frishman D., Gleissner A., Hani J.et al. 1997 Overview of the yeast genome.Nature 387, 7–8.

    Article  PubMed  Google Scholar 

  • Miyao A., Tanaka K., Murata K., Sawaki H., Takeda S., Abe K.et al. 2003 Target site specificity of theTos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome.Plant Cell 15, 1771–1780.

    Article  PubMed  Google Scholar 

  • Mohan M., Nair S., Bhagwat A., Krishna T. G., Yano M. and Bhatia C. R.et al. 1997 Genome mapping, molecular markers and marker-assisted selection in crop plants.Mol. Breed. 3, 87–103.

    Article  CAS  Google Scholar 

  • Monna L., Kitazawa N., Yoshino R., Suzuki J., Masuda H., Maehara Y.et al. 2002 Positional cloning of rice semidwarfing gene,sd-1: rice‘green revolution gene’ encodes a mutant enzyme involved in gibberellin synthesis.DNA Res. 9, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Monna L., Miyao A., Inoue T., Fukuoka S., Yamazaki M., Zhong H. S.et al. 1994 Determination of RAPD markers in rice and their conversion into sequence tagged sites (STSs) and STSspecific primers.DNA Res. 1, 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Moore G., Devos K. M., Wang Z. and Gale M. D. 1995 Cereal genome evolution: Grasses, line up and form a circle.Curr. Biol. 5, 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Murai N., Li Z. J., Kawagoe Y. and Hayashimoto A. 1991 Transposition of the maize activator element in transgenic rice plants.Nucl. Acids Res. 19, 617–622.

    Article  PubMed  CAS  Google Scholar 

  • Nagamura Y., Antonio B. A. and Sasaki T. 1997 Rice molecular genetic map using RFLPs and its applications.Plant Mol. Biol. 35, 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Nakagahra M., Okuno K. and Vaughan D. 1997 Rice genetic resources: history, conservation, investigative characterization and use in Japan.Plant Mol. Biol. 35, 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Nakazaki T., Okumoto Y., Horibata A., Yamahira S., Teraishi M., Nishida H.et al. 2003 Mobilization of a transposon in the rice genome.Nature 421, 170–172.

    Article  PubMed  CAS  Google Scholar 

  • Nasu S., Suzuki J., Ohta R., Hasegawa K., Yui R., Kitazawa N.et al. 2002 Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers.DNA Res. 9, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Ohmido N., Akiyama Y. and Fukui K. 1998 Physical mapping of unique nucleotide sequences on identified rice chromosomes.Plant Mol. Biol. 38, 1043–1052.

    Article  PubMed  CAS  Google Scholar 

  • Ohmido N., Kijima K., Ashikawa I., De Jong J. H. and Fukui K. 2001 Visualization of the terminal structure of rice chromosomes 6 and 12 with multicolor FISH to chromosomes and extended DNA fibers.Plant Mol. Biol. 47, 413–421.

    Article  PubMed  CAS  Google Scholar 

  • Paterson A. H., Lan T. H., Reischmann K. P., Chang C., Lin Y. R., Liu S. C.et al. 1996 Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence.Nat. Genet. (suppl.)14, 380–382.

    Article  PubMed  CAS  Google Scholar 

  • Patterson S. D. and Aebersold R. H. 2003 Proteomics: the first decade and beyond.Nat. Genet. 33, 311–323.

    Article  PubMed  CAS  Google Scholar 

  • Pereira A. 2000 A transgenic perspective on plant functional genomics.Transgenic Res. 9, 245–260.

    Article  PubMed  CAS  Google Scholar 

  • Pertea M. and Salzberg S. L. 2002 Computational gene finding in plants.Plant Mol. Biol. 48, 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Qi L., Echalier B., Friebe B. and Gill B. S. 2003 Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs.Funct. Integr. Genomics 3, 39–55.

    PubMed  CAS  Google Scholar 

  • Rhee S. Y. 2000 Bioinformatic resources, challenges and opportunities usingArabidopsis as a model organism in a post-genomic era.Plant Physiol. 124, 1460–1464.

    Article  PubMed  CAS  Google Scholar 

  • Rhee S. Y., Beavis W., Berardini T. Z., Chen G., Dixon D., Doyle A.et al. 2003 TheArabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway toArabidopsis biology, research materials and community.Nucl. Acids Res. 31, 224–228.

    Article  PubMed  CAS  Google Scholar 

  • Rossberg M., Theres K., Acarkan A., Herrero R., Schmitt T., Schumacher K.et al. 2001 Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato,Arabidopsis andCapsella genomes.Plant Cell 13, 979–988.

    Article  PubMed  CAS  Google Scholar 

  • Rouze P., Pavy N. and Rombauts S. 1999 Genome annotation: which tools do we have for it?Curr. Opin. Plant Biol. 2, 90–95.

    Article  PubMed  CAS  Google Scholar 

  • Rudd S. 2003 Expressed sequence tags: alternative or complement to whole genome sequences?Trends Plant Sci. 8, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Saha S., Sparks A. B., Rago C., Akmaev V., Wang C. J., Vogelstein B.et al. 2002 Using the transcriptome to annotate the genome.Nat. Biotechnol. 20, 508–512.

    Article  PubMed  CAS  Google Scholar 

  • Sahi C., Agarwal M., Reddy M. K., Sopory S. K. and Grover A. 2003 Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method.Theor. Appl. Genet. 106, 620–628.

    PubMed  CAS  Google Scholar 

  • Saji S., Umehara Y., Antonio B. A., Yamane H., Tanoue H., Baba T.et al. 2001 A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes.Genome 44, 32–37.

    Article  PubMed  CAS  Google Scholar 

  • Saji S., Umehara Y., Kurata N., Ashikawa I. and Sasaki T. 1996 Construction of YAC contigs on rice chromosome 5.DNA Res. 3, 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Sakata K., Antonio B. A., Mukai Y., Nagasaki H., Sakai Y., Makino K.et al. 2000 INE: a rice genome database with an integrated map view.Nucl. Acids Res. 28, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Sakata K., Nagamura Y., Numa H., Antonio B. A., Nagasaki H., Idonuma A.et al. 2002 RiceGAAS: an automated annotation system and database for rice genome sequence.Nucl. Acids Res. 30, 98–102.

    Article  PubMed  CAS  Google Scholar 

  • Sakata K., Nagasaki H., Idonuma A., Waki K., Kise M. and Sasaki T. 1999 A computer program for prediction of gene domain on rice genome sequence. InThe 2nd Georgia Tech International Conference on Bioinformatics, Abstracts, pp. 78.

  • Sallaud C., Meynard D., Van Boxtel J., Gay C., Bes M., Brizard J. P.et al. 2003 Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics.Theor. Appl. Genet. 106, 1396–1408.

    PubMed  CAS  Google Scholar 

  • Salamov A. A. and Solovyev V. V. 2000Ab initio gene finding in Drosophila genomic DNA.Genome Res. 10, 516–522.

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh G. H., Siopongco J., Wode L. J., Gharlyazie B. and Bennet J. 2002 A proteomic approach to analysing drought-and salt-responsiveness in rice.Field Crops Res. 76, 199–219.

    Article  Google Scholar 

  • Salse J., Piegu B., Cooke R. and Delseny M. 2002 Synteny betweenArabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project.Nucl. Acids Res. 30, 2316–2328.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T. 1998 The rice genome project in japan.Proc. Natl. Acad. Sci. USA 95, 2027–2028.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T. 2002 Rice genomics to understand rice plant as an assembly of genetic codes.Curr. Sci. 83, 834–839.

    CAS  Google Scholar 

  • Sasaki T. and Burr B. 2000 International rice genome sequencing project: the effort to completely sequence the rice genome.Curr. Opin. Plant Biol. 3, 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T., Matsumoto T., Yamamoto K., Sakata K., Baba T., Katayose Y.et al. 2002 The genome sequence and structure of rice chromosome 1.Nature 420, 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Sato Y., Sentoku N., Miura Y., Hirochika H., Kitano H. and Matsuoka M. 1999 Loss-of-function mutations in the rice homeobox geneOSH15 affect the architecture of internodes resulting in dwarf plants.EMBO J. 18, 992–1002.

    Article  PubMed  CAS  Google Scholar 

  • Schena M., Shalon D., Davis R. W. and Brown P. O. 1995 Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R. 2000 Synteny: recent advances and future prospects.Curr. Opin. Plant Biol. 3, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R. 2002 Plant genome evolution: lessons from comparative genomics at the DNA level.Plant Mol. Biol. 48, 21–37.

    Article  PubMed  CAS  Google Scholar 

  • Schoof H. and Karlowski W. M. 2003 Comparison of rice andArabidopsis annotation.Curr. Opin. Plant Biol. 6, 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto K., Miyazaki C., Hashimoto H., Izawa T., Itoh K., Terada R.et al. 1993 Trans-activation and stable integration of the maize transposable elementDs cotransfected with theAc transposase gene in transgenic rice plants.Mol. Gen. Genet. 239, 354–360.

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa T., Kurata N., Wu J., Umehara Y., Ashikawa I. and Sasaki T. 1996 Assignment of YAC clones spanning rice chromosomes 10 and 12.DNA Res. 3, 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Shimono M., Yazaki J., Nakamura K., Kishimoto N., Kikuchi S., Iwano M.et al. 2003 Disease control: cDNA microarray analysis of gene expression in rice plants treated with probenazole, a chemical inducer of disease resistance.J. Gen. Plant Pathol. 69, 76–82.

    Article  CAS  Google Scholar 

  • Shishido R., Apisitwanich S., Ohmido N., Okinaka Y., Mori K. and Fukui K. 1998 Detection of specific chromosome reduction in rice somatic hybrids with the A, B and C genomes by multi-colour genomicin situ hybridization.Theor. Appl. Genet. 97, 1013–1018.

    Article  Google Scholar 

  • Shizuya H., Birren B., Kim U. J., Mancino V., Slepak T., Tachiiri Y.et al. 1992 Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA inEscherichia coli using an F-factor-based vector.Proc. Natl. Acad. Sci. USA 89, 8794–8797.

    Article  PubMed  CAS  Google Scholar 

  • Singh K., Ishii T., Parco A., Huang N., Brar D. S. and Khush G. S. 1996 Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.).Proc. Natl. Acad. Sci. USA 93, 6163–6168.

    Article  PubMed  CAS  Google Scholar 

  • Singh N. K., Raghuvanshi S., Srivastava S. K., Gaur A., Pal A. K., Dalal V.et al. 2004 Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny.Funct. Integr. Genomics (in press).

  • Song R., Llaca V. and Messing J. 2002 Mosaic organization of orthologous sequences in grass genomes.Genome Res. 12, 1549–1555.

    Article  PubMed  CAS  Google Scholar 

  • Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T.et al. 1995 A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21.Science 270, 1804–1806.

    Article  PubMed  CAS  Google Scholar 

  • Sorrells M. E., La Rota M., Bermudez-Kandianis C. E., Greene R. A., Kantety R., Munkvold J. D.et al. 2003 Comparative DNA sequence analysis of wheat and rice genomes.Genome Res. 13, 1818–1827.

    PubMed  CAS  Google Scholar 

  • Springer P. S. 2000 Gene traps: tools for plant development and genomics.Plant Cell 12, 1007–1020.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K., Otsuki Y., Saji S. and Hirochika H. 1994 Transposition of the maizeDs element from a viral vector to the rice genome.Plant J. 5, 863–871.

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan V. 1996 Horizontal spread of transposon mutagenesis: new uses for old elements.Trends Plant Sci. 1, 184–190.

    Article  Google Scholar 

  • Takahashi Y., Shomura A., Sasaki T. and Yano M. 2001Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinaseCK2.Proc. Natl. Acad. Sci. USA 98, 7922–7927.

    Article  PubMed  CAS  Google Scholar 

  • Takano M., Kanegae H., Shinomura T., Miyao A., Hirochika H. and Furuya M. 2001 Isolation and characterization of rice phytochrome A mutants.Plant Cell 13, 521–534.

    Article  PubMed  CAS  Google Scholar 

  • Tanoue H., Shimokawa T., Wu J., Sue N., Umehara Y., Ashikawa I.et al. 1997 Ordered YAC clone contigs assigned to rice chromosomes 3 and 11.DNA Res. 4, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Tao Q., Chang Y.-L., Wang J., Chen H., Islam-Faridi M. N., Scheuring C.et al. 2001 Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis.Genetics 158, 1711–1724.

    PubMed  CAS  Google Scholar 

  • Tao Q., Wang A. and Zhang H. B. 2002 One large-insert planttransformation-competent BIBAC library and three BAC libraries ofjaponica rice for genome research in rice and other grasses.Theor. Appl. Genet. 105, 1058–1066.

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S., Declerck G., Lukashova A., Lipovich L., Cartinhour S. and McCouch S. 2001 Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations and genetic marker potential.Genome Res. 11, 1441–1452.

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S., Park W. D., Ayres N., Cartinhour S., Hauck N. and Lipovich L.et al. 2000 Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.).Theor. Appl. Genet. 100, 697–712.

    Article  CAS  Google Scholar 

  • Terada R., Urawa H., Inagaki Y., Tsugane K. and Iida S. 2002 Efficient gene targeting by homologous recombination in rice.Nat. Biotechnol. 20, 1030–1034.

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative 2000 Analysis of the genome sequence of the flowering plantArabidopsis thaliana.Nature 408, 796–815.

    Article  Google Scholar 

  • TheC. Elegans Sequencing Consortium 1998 Genome sequence of the nematodeC. elegans: a platform for investigating biology.Science 282, 2012–2018.

    Article  Google Scholar 

  • The International Human Genome Mapping Consortium 2001 Initial sequencing and analysis of human genome.Nature 409, 860–921.

    Article  Google Scholar 

  • The Rice Chromosome 10 Sequencing Consortium 2003 In-depth view of structure, activity and evolution of rice chromosome 10.Science 300, 1566–1569.

    Article  CAS  Google Scholar 

  • The Rice Full-Length cDNA Consortium 2003 Collection, mapping and annotation of over 28,000 cDNA clones from japonica rice.Science 301, 376–379.

    Article  Google Scholar 

  • Turcotte K., Srinivasan S. and Bureau T. 2001 Survey of transposable elements from rice genomic sequences.Plant J. 25, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi A. K. and Khurana J. P. 2003 Plant molecular biology and biotechnology research in the post-recombinant DNA era.Adv. Biochem. Eng. Biotechnol. 84, 91–121.

    PubMed  CAS  Google Scholar 

  • Tyagi A. K., Khurana J. P., Khurana P., Mohanty A. and Bharti A. K. 2003 Genome-wide molecular approaches in plants: From structure to function. InProceedings of Diamond Jubilee Symposium of Indian Society for Genetics and Plant Breeding. ISGPB, New Delhi, pp. 235–250.

  • Tyagi A. K. and Mohanty A. 2000 Rice transformation for crop improvement and functional genomics.Plant Sci. 158, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Umehara Y., Inagaki A., Tanoue H., Yasukochi Y., Nagamura Y., Saji S.et al. 1995 Construction and characterization of a rice YAC library for physical mapping.Mol. Breed. 1, 79–89.

    Article  CAS  Google Scholar 

  • Umehara Y., Kurata N., Ashikawa I. and Sasaki T. 1997 Yeast artificial chromosome clones of rice chromosome 2 ordered using DNA markers.DNA Res. 4, 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Umehara Y., Tanoue H., Kurata N., Ashikawa I., Minobe Y. and Sasaki T. 1996 An ordered yeast artificial chromosome library covering over half of rice chromosome 6.Genome Res. 6, 935–942.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan D. A., Morishima H. and Kadowaki K. 2003 Diversity in theOryza genus.Curr. Opin. Plant Biol. 6, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Velculescu V. E., Zhang L., Vogelstein B. and Kinzler K. W. 1995 Serial analysis of gene expression.Science 270, 484–487.

    Article  PubMed  CAS  Google Scholar 

  • Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G.et al. 2001 The sequence of the human genome.Science 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Walbot V. 1992 Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis.Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 49–82.

    Article  CAS  Google Scholar 

  • Walden R., Fritze K., Hayashi H., Miklashevichs E., Harling H. and Schell J. 1994 Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development.Plant Mol. Biol. 26, 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z. -X., Idonuma A., Umehara Y., Van Houten W., Ashikawa I., Minobe Y.et al. 1996 Physical mapping of rice chromosome 1 with yeast artificial chromosomes (YACs).DNA Res. 3, 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z. X., Yano M., Yamanouchi U., Iwamoto M., Monna L., Hayasaka H.et al. 1999 ThePib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes.Plant J. 19, 55–64.

    Article  PubMed  Google Scholar 

  • Ware D. and Stein L. 2003 Comparison of genes among cereals.Curr. Opin. Plant Biol. 6, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Ware D. H., Jaiswal P., Ni J., Yap I. V., Pan X., Clark K. Y.et al. 2002a Gramene, a tool for grass genomics.Plant Physiol. 130, 1606–1613.

    Article  PubMed  CAS  Google Scholar 

  • Ware D., Jaiswal P., Ni J., Pan X., Chang K., Clark K.et al. 2002b Gramene: a resource for comparative grass genomics.Nucl. Acids Res. 30, 103–105.

    Article  PubMed  CAS  Google Scholar 

  • Weigel D., Ahn J. H., Blazquez M. A., Borevitz J. O., Christensen S. K., Fankhauser C.et al. 2000 Activation tagging inArabidopsis.Plant Physiol. 122, 1003–1013.

    Article  PubMed  CAS  Google Scholar 

  • Wisman E. and Ohlrogge J. 2000Arabidopsis microarray service facilities.Plant Physiol. 124, 1468–1471.

    Article  PubMed  CAS  Google Scholar 

  • Wong G. K. -S., Wang J., Tao L., Tan J., Zhang J., Passey D. A.et al. 2002 Compositional gradients in Gramineae genes.Genome Res. 12, 851–856.

    Article  PubMed  CAS  Google Scholar 

  • Wu C., Li X., Yuan W., Chen G., Kilian A., Li J.et al. 2003 Development of enhancer trap lines for functional analysis of the rice genome.Plant J. 35, 418–427.

    Article  PubMed  CAS  Google Scholar 

  • Wu J., Maehara T., Shimokawa T., Yamamoto S., Harada C., Takazaki Y.et al. 2002 A comprehensive rice transcript map containing 6591 expressed sequence tag sites.Plant Cell 14, 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Wu J., Matsui E., Yamamoto K., Nagamura Y., Kurata N., Takuji S.et al. 1995 Genomic organization of 57 ribosomal protein genes in rice (Oryza sativa L.) through RFLP mapping.Genome 38, 1189–1200.

    PubMed  CAS  Google Scholar 

  • Xue Y., Li J. and Xu Z. 2003 Recent highlights of the China rice functional genomics program.Trends Genet. 19, 390–394.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K. and Sasaki T. 1997 Large-scale EST sequencing in rice.Plant Mol. Biol. 35, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Yamanouchi U., Yano M., Lin H., Ashikari M. and Yamada K. 2002 A rice spotted leaf gene,Spl7, encodes a heat stress transcription factor protein.Proc. Natl. Acad. Sci. USA 99, 7530–7535.

    Article  PubMed  CAS  Google Scholar 

  • Yang Z., Sun X., Wang S. and Zhang Q. 2003 Genetic and physical mapping of a new gene for bacterial blight resistance in rice.Theor. Appl. Genet. 106, 1467–1472.

    PubMed  CAS  Google Scholar 

  • Yang T. -J., Yu Y., Nah G., Atkins M., Lee S., Frisch D. A.et al. 2003 Construction and utility of 10-kb libraries for efficient clone-gap closure for rice genome sequencing.Theor. Appl. Genet. 107, 652–660.

    Article  PubMed  CAS  Google Scholar 

  • Yano M. and Sasaki T. 1997 Genetic and molecular dissection of quantitative traits in rice.Plant Mol. Biol. 35, 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Yano M., Katayose Y., Ashikari M., Yamanouchi U., Monna L., Fuse T.et al. 2000Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to theArabidopsis flowering time geneCONSTANS.Plant Cell 12, 2473–2483.

    Article  PubMed  CAS  Google Scholar 

  • Yazaki J., Kishimoto N., Ishikawa M. and Kikuchi S. 2002 Rice expression database: the gateway to rice functional genomics.Trends Plant Sci. 7, 563–564.

    Article  CAS  Google Scholar 

  • Yazaki J., Kishimoto N., Nakamura K., Fujii F., Shimbo K., Otsuka Y.et al. 2000 Embarking on rice functional genomics via cDNA microarray: use of 3’ UTR probes for specific gene expression analysis.DNA Res. 7, 367–370.

    Article  PubMed  CAS  Google Scholar 

  • Ye X., Al-Babili S., Kloti A., Zhang J., Lucca P., Beyer P.et al. 2000 Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm.Science 287, 303–305.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura A., Ideta O. and Iwata N. 1997 Linkage map of phenotype and RFLP markers in rice.Plant Mol. Biol. 35, 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura S., Umehara Y., Kurata N., Nagamura Y., Sasaki T., Minobe Y.et al. 1996 Identification of a YAC clone carrying theXa-1 allele, a bacterial blight resistance gene in rice.Theor. Appl. Genet. 93, 117–122.

    Article  CAS  Google Scholar 

  • Yoshimura S., Yamanouchi U., Katayose Y., Toki S., Wang Z. -X., Kono I.et al. 1998 Expression ofXa1, a bacterial blightresistance gene in rice, is induced by bacterial inoculation.Proc. Natl. Acad. Sci. USA 95, 1663–1668.

    Article  PubMed  CAS  Google Scholar 

  • Yu J., Hu S., Wang J., Wong G. K., Li S., Liu B.et al. 2002 A draft sequence of the rice genome (Oryza sativa L. ssp.indica).Science 296, 79–92.

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q., Ouyang S., Liu J., Suh B., Cheung F., Sultana R.et al. 2003 The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists.Nucl. Acids Res. 31, 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q., Quackenbush J., Sultana R., Pertea M., Salzberg S. L. and Buell C. R. 2001 Rice bioinformatics. Analysis of rice sequence data and leveraging the data to other plant species.Plant Physiol. 125, 1166–1174.

    Article  PubMed  CAS  Google Scholar 

  • Zang M. 1997 Identification of protein coding region in the human genome based on quadratic discriminant analysis.Proc. Natl. Acad. Sci. USA 94, 565–568.

    Article  Google Scholar 

  • Zhang H.-B., Choi S., Woo S.-S., Li Z. and Wing R. A. 1996 Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population.Mol. Breed. 2, 11–24.

    Article  CAS  Google Scholar 

  • Zhao Q., Zhang Y., Cheng Z., Chen M., Wang S., Feng Q.et al. 2002 A fine physical map of the rice chromosome 4.Genome Res. 12, 817–823.

    Article  PubMed  CAS  Google Scholar 

  • Zhu T., Budworth P., Chen W., Provart N., Chang H.-S., Guimil S.et al. 2003 Transcriptional control of nutrient partitioning during rice grain filling.Plant Biotech. J. 1, 59–70.

    Article  CAS  Google Scholar 

  • Zwick M. S., Islam-Faridi M. N., Czeschin D. G., Wing R. A., Hart G. E., Stelly D. M.et al. 1998 Physical mapping of theliguleless linkage group inSorghum bicolor using rice RFLPselected sorghum BACs.Genetics 148, 1983–1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh K. Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, A.K., Khurana, J.P., Khurana, P. et al. Structural and functional analysis of rice genome. J Genet 83, 79–99 (2004). https://doi.org/10.1007/BF02715832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715832

Keywords

Navigation