Skip to main content
Log in

Electron cyclotron resonance heating in a short cylindrical plasma system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ECR surfaces (B = 875.0 G andB = 437.5 G) reside in the system. ECR plasma is produced with hydrogen with typical plasma density ne as 3.2 × 1010 cm-3 and plasma temperature Te between 9 and 15 eV. Various cut-off and resonance positions are identified in the plasma system. ECR heating (ECRH) of the plasma is observed experimentally. This heating is because of the mode conversion of X-wave to electron Bernstein wave (EBW) at the upper hybrid resonance (UHR) layer. The power mode conversion efficiency is estimated to be 0.85 for this system. The experimental results are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Rypdal, A Fredriksen, O M Olsen and K G Hellblom,Phys. Plasmas 4, 1468 (1997)

    Article  ADS  Google Scholar 

  2. O C Eldridge and A C England,Nucl. Fusion 29, 1583 (1989)

    Google Scholar 

  3. Wallace M Manheimer, Infrared and millimeter waves, inInstrumentation (Academic Press, New York, 1979) vol. 2, p. 299

    Google Scholar 

  4. A C England,IEEE Trans. Plasma Sci. PS-12, 124 (1984)

    Article  Google Scholar 

  5. M Porkolab, L Friedland and I B Bernstein,Nucl. Fusion 21, 1643 (1981)

    Google Scholar 

  6. U Gasparino,Proc. Eighth Joint Workshop ECE and ECRH, IPP III/186,2, 19 (1993)

    Google Scholar 

  7. D Bora,Phys. Lett. A139, 308 (1989)

    ADS  Google Scholar 

  8. P K Sharma, J P Singh and D Bora,Plasma Phys. Control. Fusion 39, 1669 (1997)

    Article  ADS  Google Scholar 

  9. O A Popov,J. Vac. Sci. Technol. A7, 894 (1989)

    ADS  Google Scholar 

  10. O A Popov,J. Vac. Sci. Technol. A8, 2909 (1990)

    ADS  Google Scholar 

  11. A Ganguli, M K Akhtar, R D Tarey and R K Jarwal,Phys. Lett. A250, 137 (1998)

    ADS  Google Scholar 

  12. K S Golovanivsky,Phys. Rev. E52, 2969 (1995)

    ADS  Google Scholar 

  13. H Potts and J Hugill,Plasma Sources Sci. Technol. 9, 18 (2000)

    Article  ADS  Google Scholar 

  14. A Ganguli, M K Akhtar and R D Tarey,Plasma Sources Sci. Technol. 8, 519 (1999)

    Article  ADS  Google Scholar 

  15. T H Stix,Waves in plasmas (American Institute of Physics, New York, 1992) p. 31

    Google Scholar 

  16. D G Swanson,Theory of mode conversion and tunneling in inhomogeneous plasmas (John Wiley and Sons, Inc., New York, 1998) p. 27

    Google Scholar 

  17. Francis F Chen, Introduction to plasma physics and controlled fusion, inPlasma Physics (Plenum Press, New York, 1984) vol. 127

    Google Scholar 

  18. K G Budden,The propagation of radio waves (Cambridge University Press, London, 1985) p. 596

    Google Scholar 

  19. A K Ram and S D Schultz,Phys. Plasmas 7, 4084 (2000)

    Article  ADS  Google Scholar 

  20. Noah Hershkowitz, O Auciello and D L Flamm,Plasma diagnostics: Discharge parameters and chemistry (Academic Press Inc., San Diego, USA, 1989) vol. 1, p. 113

    Google Scholar 

  21. Von M J Druyvesteyn,Z. Phys. 64, 781 (1930)

    Article  ADS  Google Scholar 

  22. V A Godyak, R B Piejak and B M Alexandrovich,Plasma Sources Sci. Technol. 1, 36 (1992)

    Article  ADS  Google Scholar 

  23. T Lagarde, Y Arnal, A Lacoste and J Pelletier,Plasma Sources Sci. Technol. 10, 181 (2001)

    Article  ADS  Google Scholar 

  24. Samuel Y Liao,Microwave devices and circuits (Prentice-Hall of India Pvt. Ltd, New Delhi, 2000) p. 116

    Google Scholar 

  25. H P Laqua, V Erckmann, H J Hartfuß and H Laqua, W7-AS Team and ECRH Group,Phys. Rev. Lett. 78, 3467 (1997)

    Article  ADS  Google Scholar 

  26. H P Laqua, H J Hartfuß and W7-AS Team,Phys. Rev. Lett. 81, 2060 (1998)

    Article  ADS  Google Scholar 

  27. I Langmuir,Phys. Rev. 36, 954 (1929)

    Article  ADS  Google Scholar 

  28. Ashwani Kumar and R Bhaskaran,Rev. Sci. Instrum. 63, 4439 (1992)

    Article  ADS  Google Scholar 

  29. R Bhaskaran and T Selvakumaran,Rev. Sci. Instrum. 70, 2637 (1999)

    Article  ADS  Google Scholar 

  30. Vipin K Yadav and D Bora,Plasma Sources Sci. Technol. 13, 231 (2004)

    Article  ADS  Google Scholar 

  31. I H Hutchinson and A H Morton,Nucl. Fusion 16, 447 (1976)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, V.K., Bora, D. Electron cyclotron resonance heating in a short cylindrical plasma system. Pramana - J Phys 63, 563–577 (2004). https://doi.org/10.1007/BF02704484

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704484

Keywords

PACS Nos

Navigation