Skip to main content

Advertisement

Log in

The effect of external magnetic field on the collisional power absorption in helicon plasma sources

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The paper reports on the effects of uniform and non-uniform external magnetic field on the power absorption in a helicon plasma source, which are computationally investigated by the CST Microwave Studio code. RF (13.56 MHz) power deposition was studied using one designs of antennas, namely, the Nagoya type-III. Argon was used as the plasma working gas at the operating pressure of 15 mTorr. We have focused on the collisional power absorption utilizing WKB approximation to describe the plasma inhomogeneity. We put discrete plasma density layers in CST. The obtained results show that the radial inhomogeneity has different effects on the power absorption at the uniform and the non-uniform external magnetic fields. It is found that at uniform external magnetic fields (i.e., B0 = 200 G), there is a specific density (nc) ranging from 1 × 1018 m−3 to 5 × 1018 m−3, before and after which the radial inhomogeneity decreases and increases the absorbed power, respectively. On the other hand, at uniform external magnetic fields (i.e., B0 = 900 G), the inhomogeneity has no regular effect on the power absorption in various plasma densities. In addition, for a given plasma density (e.g., n = 1018 m−3), as the magnetic field increases, the radial inhomogeneity effect on the power absorption would decrease for the Nagoya type-III.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.F. Chen, H. Torreblanca, IEEE Trans. Plasma Sci. 39, 2452 (2011)

    Article  ADS  Google Scholar 

  2. A.W. Kieckhafer, M.L.R. Walker, Rev. Sci. Instrum. 81, 075106 (2010)

    Article  ADS  Google Scholar 

  3. K. Takahashi, A. Komuro, A. Ando, Rev. Sci. Instrum. 86, 023505 (2015)

    Article  ADS  Google Scholar 

  4. E. Scimea, P.A. Keitera, M.M. Balkeya, J.L. Klinea, X. Suna, A.M. Keeseea, R.A. Hardina, I.A. Biloiua, S. Houshmandyara, S. Chakraborty Thakura, J. Carra, M. Galantea, D. McCarrena, S. Searsa, J. Plasma Phys. 81, 345810103 (2015)

    Article  Google Scholar 

  5. I.J. Kim, N.S. Jung, H.D. Jung, Y.S. Hwang, H.D. Choi, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 829 (2008)

    Article  ADS  Google Scholar 

  6. A. Daibo, A. Okamoto, H. Takahashi, T. Kumagai, T. Takahashi, S. Tsubotaand, S. Kitajima, Rev. Sci. Instrum. 85, 02B307 (2014)

    Article  Google Scholar 

  7. G.H. Mileyand, J. Sved, Appl. Radiat. Isot. 53, 779 (2000)

    Article  Google Scholar 

  8. D. Arnosh, F.F. Chen, Phys. Plasmas 5, 1239 (1998)

    Article  ADS  Google Scholar 

  9. M. Kramer, Phys. Plasmas 6, 1052 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. G.G. Borg, R.W. Boswell, Phys. Plasmas 5, 564 (1998)

    Article  ADS  Google Scholar 

  11. A. Komori, T. Shoji, K. Miyamoto, J. Kawai, K. Kawai, Phys. Fluids B 3, 893 (1991)

    Article  ADS  Google Scholar 

  12. G. Chevalier, F.F. Chen, J. Vac. Sci. Technol. A 11, 1165 (1993)

    Article  ADS  Google Scholar 

  13. K.P. Shamrai, V.B. Taranov, Plasma Sources Sci. Technol. 5, 474 (1996)

    Article  ADS  Google Scholar 

  14. M. Light, F.F. Chen, Phys. Plasmas 2, 1084 (1995)

    Article  ADS  Google Scholar 

  15. J.P. Klozenberg, B. McNamara, P.C. Thonemann, J. Fluid Mech. 21, 545 (1965)

    Article  ADS  Google Scholar 

  16. A. Ganguli, Phys. Plasmas 14, 113503 (2007)

    Article  ADS  Google Scholar 

  17. X.M. Guo, J. Scharer, Y. Mouzouris, L. Louis, Phys. Plasmas 6, 3400 (1999)

    Article  ADS  Google Scholar 

  18. F.F. Chen, Plasma Sources Sci. Technol. 3, 49 (1994)

    Article  ADS  Google Scholar 

  19. D. Curreliand, F.F. Chen, Phys. Plasmas 18, 113501 (2011)

    Article  ADS  Google Scholar 

  20. Th Enk, M. Kramer, Phys. Plasmas 7, 4308 (2000)

    Article  ADS  Google Scholar 

  21. S. Cho, J. Kwak, Phys. Plasmas 4, 4167 (1997)

    Article  ADS  Google Scholar 

  22. Y. Mouzouris, J.E. Scharer, IEEE Trans. Plasma Sci. 24, 152 (1996)

    Article  ADS  Google Scholar 

  23. Y. Mouzouris, J.E. Scharer, Phys. Plasmas 5, 4253 (1998)

    Article  ADS  Google Scholar 

  24. Y. Mouzouris, J.E. Scharer, IEEE Trans. Plasma Sci. 27, 66 (1999)

    Article  ADS  Google Scholar 

  25. D. Melazzi, V. Lancellotti, Comput. Phys. Commun. 185, 1914 (2014)

    Article  ADS  Google Scholar 

  26. D. Melazzi, V. Lancellotti, Plasma Sources Sci. Technol. 24, 025024 (2015)

    Article  ADS  Google Scholar 

  27. A. Degeling, N. Mikhelson, R. Boswell, N. Sadeghi, Phys. Plasmas 5, 572 (1998)

    Article  ADS  Google Scholar 

  28. T. Shoji, Y. Sakawa, S. Nakazawa, K. Kadota, T. Sato, Plasma Sources Sci. Technol. 2, 5 (1993)

    Article  ADS  Google Scholar 

  29. S. Shinohara, K. Yonekura, Plasma Phys. Controlled Fusion 42, 41 (2000)

    Article  ADS  Google Scholar 

  30. J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975)

  31. A.A. Rukhadz, V.P. Silin, Sov. Phys. Usp. 7, 209 (1964)

    Article  ADS  Google Scholar 

  32. T.H. Stix, in Theory of Plasma Waves (McGraw-Hill, New York, 1962), p. 10

  33. D.G. Swanson, Plasma Waves, 2nd ed. (AIP, New York, 2003)

  34. See https://www.cst.com/Applications/Article/Microwave-Plasma-Sources for information about the ability of CST MICROWAVE STUDIO to consider plasma as a dispersive material

  35. P. Chabert, N.St.J. Braithwaite, Physics of Radio-Frequency Plasmas (Cambridge University Press, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakineh Meshkani.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, M., Meshkani, S. The effect of external magnetic field on the collisional power absorption in helicon plasma sources. Eur. Phys. J. D 74, 58 (2020). https://doi.org/10.1140/epjd/e2020-100454-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100454-0

Keywords

Navigation