Skip to main content
Log in

Trace element geochemistry of Amba Dongar carbonatite complex, India: Evidence for fractional crystallization and silicate-carbonate melt immiscibility

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Carbonatites are believed to have crystallized either from mantle-derived primary carbonate magmas or from secondary melts derived from carbonated silicate magmas through liquid immiscibility or from residual melts of fractional crystallization of silicate magmas. Although the observed coexistence of carbonatites and alkaline silicate rocks in most complexes, their coeval emplacement in many, and overlapping initial87Sr/86Sr and143Nd/144Nd ratios are supportive of their cogenesis; there have been few efforts to devise a quantitative method to identify the magmatic processes. In the present study we have made an attempt to accomplish this by modeling the trace element contents of carbonatites and coeval alkaline silicate rocks of Amba Dongar complex, India. Trace element data suggest that the carbonatites and alkaline silicate rocks of this complex are products of fractional crystallization of two separate parental melts. Using the available silicate melt-carbonate melt partition coefficients for various trace elements, and the observed data from carbonatites, we have tried to simulate trace element distribution pattern for the parental silicate melt. The results of the modeling not only support the hypothesis of silicate-carbonate melt immiscibility for the evolution of Amba Dongar but also establish a procedure to test the above hypothesis in such complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu A R, Renne P R, Das Gupta D K, Teichman F and Poreda R J 1993 Early and late alkali igneous pulses and a high3He plume origin for the Deccan flood basalts;Science 261 902–906

    Article  Google Scholar 

  • Bell K 1989Carbonatites: Genesis and Evolution (London: Unwin Hyman)

    Google Scholar 

  • Bell K and Tilton G R 2002 Probing the mantle: the story from carbonatites;EOS Trans. 83 273–277

    Google Scholar 

  • Bevington P R, Robinson D K and Bevington P 2002Data Reduction and Error Analysis for the Physical Sciences, (New York: McGraw-Hill Science)

    Google Scholar 

  • Dawson J B and Hinton R W 2003 Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa;Mineral. Mag. 67 921–930

    Article  Google Scholar 

  • Dawson J B, Smith J V and Steele I M 1994 Trace-element distribution between coexisting perovoskite, apatite and titanite from Oldoinyo Langai, Tanzania;Chem. Geol. 117 285–290

    Article  Google Scholar 

  • Dunworth E A and Bell K 2001 The Turiy Massif, Kola Peninsula, Russia: Isotopic and geochemical evidence for multi-source evolution;J. Petrol. 42 377–405

    Article  Google Scholar 

  • Gwalani L G, Rock N M S, Chang W-J, Fernandez S, Allègre C J and Prinzhofer A 1993 Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan Igneous Province, Gujarat, India. 1. Geology, petrography and petrochemistry;Mineral. Petrol. 47 219–253

    Article  Google Scholar 

  • Hamilton D L, Bedson P, Esson J 1989 The behaviour of trace elements in the evolution of carbonatites. In:Carbonatites: Genesis and Evolution, (ed) K Bell (London: Unwin Hyman) 405–427

    Google Scholar 

  • Harmer R E and Gittins J 1998 The case for primary, mantle-derived carbonatite magma;J. Petrol. 39 1895–1903

    Article  Google Scholar 

  • Iwata N 1997Geochronological study of the Deccan volcanism by 40Ar-39Armethod, Ph.D. thesis, Univ. Tokyo

  • Ionov D and Harmer R E 2002 Trace element distribution in calcite-dolomite carbonatites from Spitskop: inferences for differentiation of carbonatite magmas and the origin of carbonatites in mantle xenoliths;Earth Planet. Sci. Lett. 198 495–510

    Article  Google Scholar 

  • Jones J H, Walker D, Picket D A, Murrel M T and Beate P 1995 Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa and U between immiscible carbonate and silicate liquids;Geochim. Cosmochim. Acta 59 1307–1320

    Article  Google Scholar 

  • Keller J and Spettel B 1995 The trace element composition and petrogenesis of natrocarbonatites. In:Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites (eds) K Bell and J Keller (Springer) 70–86

  • Klemme S and Dalpé C 2003 Trace-element partitioning between apatite and carbonatite melt;Am. Mineral. 88 639–646

    Google Scholar 

  • Klemme S and Meyer H-P 2003 Trace element partitioning between baddeleyite and carbonatite melt at high pressures and high temperatures;Chem. Geol. 199 233–242

    Google Scholar 

  • Korobeinikov A N, Mitrofanov F P, Gehör S, Laajoki K, Pavlov V P and Mamontov V P 1998 Geology and copper sulphide mineralization of the Salmagorskii Ring Igneous Complex, Kola Peninsula, NW Russia;J. Petrol. 39 2033–2041

    Article  Google Scholar 

  • Laul J C 1979 Neutron activation analysis of geologic materials;Atm. Energy Rev. 17 603–695

    Google Scholar 

  • LeBas M J 1989 Diversification of carbonatite. In:Carbonatites: Genesis and Evolution (ed) K Bell (London: Unwin Hyman) 428–445

    Google Scholar 

  • Lee W J and Wyllie P J 1997 Liquid immiscibility in the join NaAlSiO4-NaSi3O8-CaCO3 at 1 Gpa: Implications for crustal carbonatites;J. Petrol. 98 1113–1135

    Article  Google Scholar 

  • Petibon C M, Kjarsgaard B A and Jenner G A 1998 Phase relationships of a silicate-bearing natrocarbonatite from Oldoinyo Lengai at 20 and 100 MPa;J. Petrol. 39 2137–2151

    Article  Google Scholar 

  • Ray J S 1998 Trace element and isotope evolution during concurrent assimilation, fractional crystallization and liquid immiscibility of a carbonated silicate magma;Geochim. Cosmochim. Acta 62 3301–3306

    Article  Google Scholar 

  • Ray J S and Pande K 1999 Carbonatite alkaline magmatism associated with continental flood basalts at stratigraphic boundaries: cause for mass extinctions;Geophys. Res. Lett. 26 1917–1920

    Article  Google Scholar 

  • Ray J S, Pande K, Pattanayak S K 2003 Evolution of Amba Dongar carbonatite complex: Constraints from40Ar-39Ar chronologies of the Inner Basalt and an alkaline plug;Int. Geo. Rev. 45 857–862

    Google Scholar 

  • Ray J S, Pande K and Venkatesan T R 2000a Emplacement of Amba Dongar carbonatite-alkaline complex at Cretaceous/Tertiary boundary from40Ar-39Ar chronology;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 109 39–47

    Google Scholar 

  • Ray J S and Ramesh R 1999 Evolution of carbonatite complexes of Deccan flood basalt province, India: Stable carbon and oxygen isotopic constraints;J. Geophys. Res. 104 29471–29482

    Article  Google Scholar 

  • Ray J S, Trivedi J R, Dayal A M 2000b Strontium isotope systematics of Amba Dongar and Sung Valley carbonatite-alkaline complexes, India: evidence for liquid immiscibility, crustal contamination and long-lived Rb/Sr enriched mantle sources;J. Asian Earth Sci. 18 585–594

    Article  Google Scholar 

  • Simonetti A, Bell K and Viladkar S G 1995 Isotopic data from the Amba Dongar carbonatite complex west-central India: Evidence for an enriched mantle source;Chem. Geol. (Isot. Geosci.) 122 185–198

    Google Scholar 

  • Srivastava R K 1997 Petrology, petrochemistry and genesis of rift-related carbonatites of Ambadungar, India;Miner. Petrol. 61 47–66

    Article  Google Scholar 

  • Sun S -s and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes; In:Magmatism in the Ocean Basins, (eds) A D Saunders and M J NorryGeol. Soc. Spl. Pub. 42 313–345

  • Sweeney R J 1994 Carbonatite melt compositions in the Earth's mantle;Earth Planet. Sci. Lett. 128 259–270

    Article  Google Scholar 

  • Veksler I V, Nielsen T F D and Sokolov S V 1998a Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: Implications for carbonatite genesis;J. Petrol. 39 2015–2031

    Article  Google Scholar 

  • Veksler IV, Petibon C, Jenner G A, Dorfman AM and Ding-well D B 1998b Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave;J Petrol 39 2095–2104

    Article  Google Scholar 

  • Viladkar S G 1996Geology of the carbonatite-alkalic dia-treme of Amba Dongar, Gujarat. A monograph published by GMDC, Ahmedabad

    Google Scholar 

  • Viladkar S G and Dulski P 1986 Rare earth element abundances in carbonatites, alkaline rocks and fenites of Ambadungar, Gujarat, India;N. Jb. Miner Mh. H1 37–48

    Google Scholar 

  • Viladkar S G and Wimmenauer W 1992 Geochemical and petrological studies on the Amba Dongar carbonatites (Gujarat, India);Chem. Erde 52 277–291

    Google Scholar 

  • Wendlandt R F and Harrison W J 1979 Rare earth element partitioning between immiscible carbonate and silicate liquids and CO2 vapor: Results and implications for the formation of light rare earth enriched rock;Contrib. Mineral. Petrol. 29 242–254

    Google Scholar 

  • Williams-Jones A E and Palmer D A S 2002 The evolution of aqueous-carbonic fluids in the Amba Dongar carbonatites, India: implications for fenitization;Chem. Geol. 185 283–301

    Article  Google Scholar 

  • Woolley A R and Kemp D R C 1989 Carbonatites: nomenclature, average chemical compositions and element distribution; In:Carbonatites: Genesis and Evolution, (ed) K Bell (London: Unwin Hyman) 1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, J.S., Shukla, P.N. Trace element geochemistry of Amba Dongar carbonatite complex, India: Evidence for fractional crystallization and silicate-carbonate melt immiscibility. J Earth Syst Sci 113, 519–531 (2004). https://doi.org/10.1007/BF02704020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704020

Keywords

Navigation