Skip to main content
Log in

Copper complexes as chemical nucleases

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Redox active mononuclear and binuclear copper(II) complexes have been prepared and structurally characterized. The complexes have planar N-donor heterocyclic bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) ligands that are suitable for intercalation to B-DNA. Complexes studied for nuclease activity have the formulations [Cu(dpq)2(H2O)] (ClO4)2.H2O (1), [CuL(H2O)2(μ-ox)](ClO4)2 (L = bpy,2; phen,3; dpq,4; and dppz,5) and [Cu(L)(salgly)] (L = bpy,6; phen,7; dpq,8; and dppz,9), where salgly is a tridentate Schiff base obtained from the condensation of glycine and salicylaldehyde. The dpq complexes are efficient DNA binding and cleavage active species. The dppz complexes show good binding ability but poor nuclease activity. The cleavage activity of thebis-dpq complex is significantly higher than thebis-phen complex of copper(II). The nuclease activity is found to be dependent on the intercalating nature of the complex and on the redox potential of the copper(II)/copper(I) couple. The ancillary ligand plays a significant role in binding and cleavage activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sigman D S, Bruice T W, Mazumder A and Sutton C L 1993Acc. Chem. Res. 26 98

    Article  CAS  Google Scholar 

  2. Sigman D S, Mazumder A and Perrin D M 1993Chem. Rev. 93 2295

    Article  CAS  Google Scholar 

  3. Pogozelski W K and Tullius T D 1998Chem. Rev. 98 1089

    Article  CAS  Google Scholar 

  4. Chin J 1991Acc. Chem. Res. 24 145

    Article  CAS  Google Scholar 

  5. Burrows C J and Muller J G 1998Chem. Rev. 98 1109

    Article  CAS  Google Scholar 

  6. Meunier B 1992Chem. Rev. 92 1411

    Article  CAS  Google Scholar 

  7. Patriviel G, Bernadou J and Meunier B 1998Adv. Inorg. Chem. 45 251

    Google Scholar 

  8. Thorp H H 1995Adv. Inorg. Chem. 43 127

    Article  CAS  Google Scholar 

  9. Pyle A M and Barton J K 1990Prog. Inorg. Chem. 38 413

    Article  CAS  Google Scholar 

  10. Sigel A and Sigel H 1996Probing nucleic acids by metal ion complexes of small molecules (New York: Dekker)

    Google Scholar 

  11. Barton J K 1986Science 233 727

    Article  CAS  Google Scholar 

  12. Francois J-C, Saison-Behmoaras T and Helene C 1988Nucleic Acids Res. 16 11431

    Article  CAS  Google Scholar 

  13. Francois J-C, Saison-Behmoaras T, Chassignol M, Thuong N T, Sun J-SandHeleneC 1988Biochemistry 29 570

    Google Scholar 

  14. Guo Q, Lu M, Seeman N C and Kallenbach N R 1990Biochemistry 29 570

    Article  CAS  Google Scholar 

  15. Veal J M and Rill R L 1988Biochemistry 27 1822

    Article  CAS  Google Scholar 

  16. Oikawa S and Kawanishi S 1996Biochemistry 35 4584

    Article  CAS  Google Scholar 

  17. Yamamoto K and Kawanishi S 1989J. Biol. Chem. 264 15435;

    CAS  Google Scholar 

  18. Yamamoto K and Kawanishi S 1991 J. Biol. Chem. 266 1509

    Google Scholar 

  19. Kubiak M, Duda A M, Garadu M L and Kozlowski H 1996J Chem. Soc., Dalton Trans. 1905

  20. Kawanishi S, Yamamoto K and Inoue S 1889Biochem. Pharmacol. 38 3491

    Google Scholar 

  21. Singh U S, Scannell R T, An H, Carter B J and Hecht S M 1995J. Am. Chem. Soc. 117 12691

    Article  CAS  Google Scholar 

  22. Sigman D S, Graham D R, Aurora D and Stern A M 1979J. Biol. Chem. 254 12269

    CAS  Google Scholar 

  23. Santra B K, Reddy PAN, Neelakanta G, Mahadevan S, Nethaji M and Chakravarty A R 2002J. Inorg. Biochem. 89 191

    Article  CAS  Google Scholar 

  24. Waring M J 1965J. Mol. Biol. 13 269

    Article  CAS  Google Scholar 

  25. Le Pecq J-B and Paoletti C 1967J. Mol. Biol. 27 87

    Article  Google Scholar 

  26. Changzheng L, Jigui W, Liufong W, Min R, Naiyong J and Jie G 1999J. Inorg. Biochem. 73 195

    Article  Google Scholar 

  27. Mahadevan S and Palaniandavar M 1998Inorg. Chem. 37 3927

    Article  CAS  Google Scholar 

  28. Thomas A M, Neelakanta G, Mahadevan S, Nethaji M and Chakravarty A R 2002Eur. J. Inorg. Chem. (in press)

  29. Veal J M, Merchant K and Rill R L 1991Nucleic Acids Res. 19 3383

    Article  CAS  Google Scholar 

  30. Collins J G, Sleeman A D, Aldrich-Wright J R, Greguric I and Hambley T W 1998Inorg. Chem. 37 3133

    Article  CAS  Google Scholar 

  31. Fry J V and Collins J G 1997Inorg. Chem. 36 2919

    Article  CAS  Google Scholar 

  32. Greguric I, Aldrich-Wright J R and Collins J G 1997J. Am. Chem. Soc. 119 3621

    Article  CAS  Google Scholar 

  33. Erkkila K E, Odom D T and Barton J K 1999Chem. Rev. 99 2777

    Article  CAS  Google Scholar 

  34. Holmlin R E, Stemp E D A and Barton J K 1998Inorg. Chem. 37 29

    Article  CAS  Google Scholar 

  35. Dupureur C M and Barton J K 1997Inorg. Chem. 36 33

    Article  CAS  Google Scholar 

  36. Dickenson J E and Summers L A 1970Aust. J. Chem. 23 1023

    Article  Google Scholar 

  37. Amouyal E, Homsi A, Chambron J-C and Sauvage J-P 1990J. Chem. Soc., Dalton Trans. 1841

  38. Kishita K, Nakahara A and Kubo M 1964Aust. J. Chem. 17 810

    Article  CAS  Google Scholar 

  39. Reichman M E, Rice S A, Thomas C A and Doty P 1954J. Am. Chem. Soc. 76 3047

    Article  Google Scholar 

  40. Bernadou J, Patriviel G, Bennis F, Girardet M and Meunier B 1989Biochemistry 28 7268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarty, A.R., Anreddy, P.A.N., Santra, B.K. et al. Copper complexes as chemical nucleases. J Chem Sci 114, 391–401 (2002). https://doi.org/10.1007/BF02703829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703829

Keywords

Navigation