Skip to main content
Log in

Synthesis, Structure, and Chemical Nuclease Activity of DNA with [Cu(dpq)(L–Met)Cl] · H2O

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new mononuclear copper complex [Cu(dpq)(L–Met)Cl] ⋅ H2O has been designed and synthesized using the phenanthroline derivative dipyridoquinoxaline (dpq). This complex has been characterized by element analysis and X-ray single crystal diffraction. The crystal structure of the complex belongs to a monoclinic system with space group C2/c. Binding of the complex to DNA has been investigated by absorption spectroscopy, fluorescence spectroscopy, and agarose gel electrophoresis. Spectrophotometric studies have showed that the mode of binding is intercalation with a binding constant Kb of 1.25 × 103 L mol–1. Additionally, the complex could quench an ethidium bromide-DNA complex. The apparent binding constant value for the complex is 1.89 × 10 5 L mol–1, which is slightly lower than the classical binding constant of 107 L mol–1. In addition, the quenching mechanism of the complex has been not static or dynamic. Agarose gel electrophoresis has shown that the complex cleaved circular pBR322 plasmid DNA to both nicked and linear forms; at higher concentrations and longer reaction times, the cutting results have been improved. The cleavage mechanism between the complex and plasmid DNA may involve singlet oxygen and hydroxyl radical as reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. M. Zhang, H. Y. Zhang, Q. P. Qin, et al., J. Inorg. Biochem. 193, 52 (2019). https://doi.org/10.1016/j.jinorgbio.2019.01.009

    Article  CAS  PubMed  Google Scholar 

  2. S. A. Patil, C. T. Prabhakara, B. M. Halasangi, et al., Spectrochim. Acta A 137, 641 (2015). https://doi.org/10.1016/j.saa.2014.08.028

    Article  CAS  Google Scholar 

  3. Q. P. Huang, S. N. Zhang, S. H. Zhang, et al., Molecules 22, 1813, 1 (2017). https://doi.org/10.3390/molecules22111813

  4. N. Vamsikrishna, M. P. Kumar, G. Ramesh, et al., J. Chem. Sci. 129, 609 (2017). https://doi.org/10.1007/s12039-017-1273-7

    Article  CAS  Google Scholar 

  5. L. F. Tan, J. L. Shen, X. J. Chen, et al., DNA Cell Biol. 28, 461 (2009). https://doi.org/10.1089/dna.2009.0889

    Article  CAS  PubMed  Google Scholar 

  6. Q. L. Zhang, J. H. Liu, X. Z. Ren, et al., Chin. J. Inorg. Chem. 19, 645 (2003). https://doi.org/10.3321/j.issn:1001-4861.2003.06.019

    Article  CAS  Google Scholar 

  7. J. Kalyanmoy, D. Somnath, P. Horst, et al., Inorg. Chim. Acta 487, 128 (2019). https://doi.org/10.1016/j.ica.2018.12.007

    Article  CAS  Google Scholar 

  8. X. L. Liang, X. Q. Zou, L. F. TAN, et al., J. Inorg. Biochem. 104, 1259 (2010). https://doi.org/10.1016/j.jinorgbio.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  9. U. P. Sidhali, F. Joseph, B. Arnab, et al., J. Bio. Inorg. Chem. 23, 1331 (2018). https://doi.org/10.1007/s00775-018-1620-2

    Article  CAS  Google Scholar 

  10. X. L. Liang, L. F. Tan, W. G. Zhu, DNA Cell Biol. 30, 61 (2011). https://doi.org/10.1089/dna.2010.1079

    Article  CAS  PubMed  Google Scholar 

  11. R. E. H. M. B. Osório, A. Neves, T. P. Camargo, et al., Inorg. Chim. Acta 435, 153 (2015). https://doi.org/10.1016/j.ica.2015.06.023

    Article  CAS  Google Scholar 

  12. T. P. Camargo, R. A. Peralta, R. Moreira, et al., Inorg. Chem. Commun. 37, 34 (2013). https://doi.org/10.1016/j.inoche.2013.09.039

    Article  CAS  Google Scholar 

  13. R. Bushtit, Z. Trávnícěk, J. Vancǒ, J. Inorg. Biochem. 116, 163 (2012). https://doi.org/10.1016/j.jinorgbio.2012.07.009

    Article  CAS  Google Scholar 

  14. R. Novotná, R. Herchel, Z. Trávnícěk, Polyhedron 34, 56 (2012). https://doi.org/10.1016/j.poly.2011.12.016

    Article  CAS  Google Scholar 

  15. B. P. Mateus, A. F. Liniquer, D. S. Josiéli, et al., Inorg. Chim. Acta 469, 561 (2018). https://doi.org/10.1016/j.ica.2017.09.063

    Article  CAS  Google Scholar 

  16. S. Tabassum, S. Amir, F. Arjmand, et al., Eur. J. Med. Chem. 60, 216 (2013). https://doi.org/10.1016/j.ejmech.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  17. Z. F. Chen, Y. X. Wu, Z. Z. Zhu, et al., Biometals 32, 227 (2019). https://doi.org/10.1007/s10534-019-00172-w

    Article  CAS  PubMed  Google Scholar 

  18. S. Zahra, C. Hossein, A. M. Amir, et al., J. Photochem. Photobiol. B: Biol. 162, 34 (2016). https://doi.org/10.1016/j.jphotobiol.2016.06.022

    Article  CAS  Google Scholar 

  19. C. Madhuri, T. Deepak, C. Sulekh, J. Mol. Struct. 1179, 431 (2019). https://doi.org/10.1016/j.molstruc.2018.11.027

    Article  CAS  Google Scholar 

  20. L. P. Lu, M. L. Zhu, P. Yang, J. Inorg. Biochem. 95, 31 (2003). https://doi.org/10.1016/S0162-0134(03)00049-7

    Article  CAS  PubMed  Google Scholar 

  21. S. Dhar, D. Senapati, P. K. Das, et al., J. Am. Chem. Soc. 125, 12 118 (2003). https://doi.org/10.1021/ja036681q

    Article  CAS  Google Scholar 

  22. S. Ramakrishnan and M. Palaniandavar, J. Chem. Sci. 117, 179 (2005). https://doi.org/10.1007/bf03356114

    Article  CAS  Google Scholar 

  23. R. Venugopal, K. Ramasamy, P. Mallayan, et al., Inorg. Chem. 46, 8208 (2007). https://doi.org/10.1021/ic700755p

    Article  CAS  Google Scholar 

  24. X. F. Li, X. Q. Feng, H. Chang, et al., J. Mater. Sci. Eng. 35, 129 (2017).https://doi.org/10.14136/j.cnki.issn:1673-2812.2017.01.026

  25. J. Q. Tao, W. Z. Shi, X. Zhuang, et al., Chin. J. Inorg. Chem. 18, 255 (2002). https://doi.org/10.3321/j.issn:1001-4861.2002.03.006

    Article  CAS  Google Scholar 

  26. G. M. Sheldrick, Correction Software (Univ. of Göttingen, Göttingen, 1996).

    Google Scholar 

  27. G. M. Sheldrick, SHELXS 97: Program for the Solution of Crystal Structures (Univ. of Göttingen, Göttingen, 1997).

    Google Scholar 

  28. G. M. Sheldrick, SHELXL 97, Program for the Refinement of Crystal Structures, (Univ. of Göttingen, Göttingen, 1997).

    Google Scholar 

  29. J. Qian, W. Gu, H. Liu, et al., Dalton. Trans. 10, 1060 (2007). https://doi.org/10.1039/B615148E

    Article  Google Scholar 

  30. C. Tu, Y. Shao, N. Gan, et al., Inorg. Chem. 43, 4761 (2004). https://doi.org/10.1021/ic049731g

    Article  CAS  PubMed  Google Scholar 

  31. S. A. Tysoe, A. D. Baker, and T. C. Strekas, J. Phys. Chem. 97, 1707 (1993). https://doi.org/10.1021/j100110a038

    Article  CAS  Google Scholar 

  32. S. M. Yue, X. R. Yue, and Y. N. Chen, Synth. Met. 200, 1 (2015). https://doi.org/10.1016/j.synthmet.2014.12.022

    Article  CAS  Google Scholar 

  33. S. Sharma, P. K. Sharma, N. Kumar, et al., Biomed. Pharmacother.65(4), 244 (2011). https://doi.org/10.1016/j.biopha.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  34. A. Wolfe, G. H. Shimer, and T. Meehan, Biochem. 26, 6392 (1987). https://doi.org/10.1021/bi00394a013

    Article  CAS  Google Scholar 

  35. J. R. Lakowicz and G. Webber, Biochem. 12, 4161 (1973). https://doi.org/10.1021/bi00745a020

    Article  CAS  Google Scholar 

  36. M. Cory, D. D. Mckee, J. Kagan, et al., J. Am. Chem. Soc. 107, 2528 (1985). https://doi.org/10.1021/ja00294a054

    Article  CAS  Google Scholar 

  37. M. Balón, M. A. Muñoz, C. Carmona, et al., Biophys. Chem. 80, 41 (1999). https://doi.org/10.1016/S0301-4622(99)00059-9

    Article  PubMed  Google Scholar 

  38. R. T. Huang, Z. D. Li, Q. Zhao, et al., Chem. Res. App. 28, 19 (2016). https://doi.org/10.3969/j.issn.1004-1656.2016.01.004

    Article  CAS  Google Scholar 

  39. Y. Y. Kou, M. L. Li, and X. H. Ren, Spectrochim. Acta A 205, 435 (2018). https://doi.org/10.1016/j/saa.2018.07.050

    Article  CAS  Google Scholar 

  40. Y. Y. Kou and X. H. Ren, Chin. J. Inorg. Chem. 33(8), 1429 (2017). https://doi.org/10.11862/CJIC.2017.157

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the General Plan of Science and Technology Plan of Beijing Education Commission (no. KM201610016006) and the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (no. X18131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Ying Kou.

Ethics declarations

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying-Ying Kou, Zhao, Q. & Wang, XR. Synthesis, Structure, and Chemical Nuclease Activity of DNA with [Cu(dpq)(L–Met)Cl] · H2O. Russ. J. Inorg. Chem. 64, 1762–1768 (2019). https://doi.org/10.1134/S0036023619140134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619140134

Keywords:

Navigation