Skip to main content
Log in

Influence of Ni concentration and Ni3Sn4 nanoparticles on morphology of Sn-Ag-Ni solders by mechanical alloying

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The mechanical alloying (MA) process was employed as an alternative method to produce the lead-free solder pastes of Sn-3.5Ag-xNi (x=0.1, 0.5, 1.0, 1.5, and 2.0) in this study. When the Ni concentration was low (x=0.1, 0.5), MA particles agglomerated to a flat ingot with particle sizes >100 µm. For higher Ni concentration (x=1.0, 1.5, and 2.0), MA particles turned into fragments with particle sizes <100 µm. The particle size of the solders appeared to be dependent on the Ni concentration. To reduce the particle size of SnAgNi alloys with low Ni concentration, Ni3Sn4 nanoparticles were doped into Sn and Ag powders to derive a Ni3Sn4-doped solder. For the Ni3Sn4-doped solder, the particle size was smaller than that doped by the pure Ni. The distinction of milling mechanism between Ni3Sn4-doped solder and the pure Ni-doped solder by MA process was probed and discussed. In addition, differential scanning calorimetry (DSC) results ensured its feasibility in applying the solder material in the reflow process. Wettability tests between solders and Cu substrate also revealed that the wetting angles for Ni3Sn4-doped solder with low Ni concentration (0.1 and 0.5 wt.%) were smaller than those for pure Ni-doped solder. The wetting angles on both Cu substrate and electroplated Ni metallization for SnAgNi solders were also comparable with commercial Sn-3.5Ag and Sn-3.0Ag-0.5Cu solders. Favorable wettability of the as-derived solder in this study was clearly demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).

    CAS  Google Scholar 

  2. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).

    Article  CAS  Google Scholar 

  3. W.H. Tao, C. Chen, C.E. Ho, W.T. Chen, and C.R. Kao, Chem. Mater. 13, 1051 (2001).

    Article  CAS  Google Scholar 

  4. S.K. Kang et al., J. Electron. Mater. 30, 1049 (2001).

    Article  CAS  Google Scholar 

  5. J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu, J. Appl. Phys. 88, 6359 (2000).

    Article  CAS  Google Scholar 

  6. P.T. Vianco et al., J. Electron. Mater. 28, 1127 (1999).

    Article  CAS  Google Scholar 

  7. M.E. Loomans and M.E. Fine, Metall. Mater. Trans. A 31, 1155 (2000).

    Article  Google Scholar 

  8. T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen, and C.Y. Li, J. Electron. Mater. 29, 1194 (2000).

    Article  CAS  Google Scholar 

  9. F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian, Soldering Surf. Mount Technol. 13, 7 (2001).

    Article  CAS  Google Scholar 

  10. W.K. Choi and H.M. Lee, J. Electron. Mater. 28, 1251 (1999).

    Article  CAS  Google Scholar 

  11. J.G. Lee, F. Guo, K.N. Subramanian, and J.P. Lucas, Soldering Surf. Mount Technol. 14, 11 (2002).

    Article  Google Scholar 

  12. M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan, and P. Elenius, J. Mater. Res. 17, 1612 (2002).

    CAS  Google Scholar 

  13. D.R. Frear and S. Thomas, MRS Bull. 28, 68 (2003).

    Google Scholar 

  14. A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 30, 1157 (2001).

    Article  CAS  Google Scholar 

  15. C.W. Hwang, J.G. Lee, K. Suganuma, and H. Mori, J. Electron. Mater. 32, 52 (2003).

    Article  CAS  Google Scholar 

  16. K.S. Kim, S.H. Huh, and K. Suganuma, Microelectron. Reliab. 43, 259 (2003).

    Article  CAS  Google Scholar 

  17. W.K. Choi, J.H. Kim, S.W. Jeong, and H.M. Lee, J. Mater. Res. 17, 43 (2002).

    Article  CAS  Google Scholar 

  18. I.E. Anderson, B.A. Cook, J. Harringa, and R.L. Terpstra, J. Electron. Mater. 31, 1166 (2002).

    Article  CAS  Google Scholar 

  19. J.P. Lucas, F. Guo, J. McDougall, T.R. Bieler, K.N. Subramanian, and J.K. Park, J. Electron. Mater. 28, 1268 (1999).

    Article  Google Scholar 

  20. S.K. Kang and T.G. Ference, J. Mater. Res. 8, 1063 (1993).

    Google Scholar 

  21. F. Guo, J. Lee, J.P. Lucas, K.N. Subramanian, and T.R. Bieler, J. Electron. Mater. 30, 1222 (2001).

    Article  CAS  Google Scholar 

  22. C.M. Chuang and K.L. Lin, J. Electron. Mater. 32, 1426 (2003).

    Article  CAS  Google Scholar 

  23. J.Y. Tsai, Y.C. Hu, C.M. Tsai, and C.R. Kao, J. Electron. Mater. 32, 1203 (2003).

    Article  CAS  Google Scholar 

  24. M.L. Huang, C.M.L. Wu, and J.K.L. Lai, J. Mater. Sci. Mater. Elec. 11, 57 (2000).

    Article  CAS  Google Scholar 

  25. C.M.L. Wu, M.L. Huang, J.K.L. Lai, and Y.C. Chan, J. Electron. Mater. 29, 1015 (2000).

    Article  CAS  Google Scholar 

  26. M.L. Huang, C.M.L. Wu, J.K.L. Lai, and Y.C. Chan, J. Electron. Mater. 29, 1021 (2000).

    Article  CAS  Google Scholar 

  27. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  28. H.L. Lai and J.G. Duh, J. Electron. Mater. 32, 215 (2003).

    Article  CAS  Google Scholar 

  29. J.S. Benjamin, Sci. Am. 234, 40 (1976).

    Article  CAS  Google Scholar 

  30. S.T. Kao and J.G. Duh, J. Electron. Mater. 33, 1445 (2004).

    Article  CAS  Google Scholar 

  31. R.R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis, J. Mater. Res. 18, 2251 (2003).

    CAS  Google Scholar 

  32. G.Y. Jang, J.W. Lee, and J.G. Duh, J. Electron. Mater. 33, 1103 (2004).

    Article  CAS  Google Scholar 

  33. L. Lu, M.O. Lai, and S. Zhang, J. Mater. Process. Technol. 67, 100 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HY., Duh, JG. Influence of Ni concentration and Ni3Sn4 nanoparticles on morphology of Sn-Ag-Ni solders by mechanical alloying. J. Electron. Mater. 35, 494–503 (2006). https://doi.org/10.1007/BF02690537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02690537

Key words

Navigation