Skip to main content
Log in

Prediction of precision from signal and noise measurement in liquid chromatography: Mathematical relationship between integration domain and precision

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The precision of integration over noisy instrumental output for quantitative analysis is studied. A probability theory is developed to predict the relative standard deviation (RSD) of integration results over an integration domain from one-point integration (peak height measurement) to entire area integration in HPLC. Common integration modes of horizontal zero line and oblique zero line are taken into account, but no peak overlap is assumed. The question of the analytical superiority of peak height measurement or integration for quantitation is answered. In the HPLC apparatus used, the minimum RSD of measurements is found in the integration domain of ca. ±0.5 σ for analytes [peaks are approximated by the Gaussian signal of width, σ (standard deviation)]. The RSD of integration measurements is also shown to depend on the stochastic properties of background noise (uncorrelated noise and correlated 1/f type noise). The theoretical conclusion is verified by Monte Carlo simulation and HPLC experiments for some aromatic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hayashi, R. Matsuda, Chromatographia41, 66 (1995).

    Article  CAS  Google Scholar 

  2. A. W. Westerberg, Anal. Chem.41, 1770 (1969).

    Article  CAS  Google Scholar 

  3. L. R. Snyder, J. Chrom. Sci.10, 200 (1972).

    Article  CAS  Google Scholar 

  4. J. P. Foley, J. Chromatogr.384, 301 (1987).

    Article  CAS  Google Scholar 

  5. A. N. Papas, M. F. Delaney, Anal. Chem.59, 54A (1987).

  6. N. Dyson, Chromatographic integration methods, Cambridge: Royal Society of Chemistry, 1990.

    Google Scholar 

  7. E. Grushka, I. Zamir, Chemical Analysis, 1989, Chapter 13.

  8. J. F. K. Huber, J. A. R. J. Hulsman, C. A. M. Meijers, J. Chromatogr.62, 79 (1971).

    Article  CAS  Google Scholar 

  9. H. Barth, E. Dallmeier, G. Courtois, H. E. Keller, B. L. Karger, J. Chromatogr.83, 289 (1973).

    Article  CAS  Google Scholar 

  10. S. R. Bakalyar, R. A. Henry, J. Chromatogr.126, 327 (1976).

    Article  CAS  Google Scholar 

  11. R. P. W. Scott, C. E. Reese, J. Chromatogr.138, 283 (1977).

    Article  CAS  Google Scholar 

  12. I. Halász, P. Vogtel, J. Chromatogr.142, 241 (1977).

    Article  Google Scholar 

  13. L. R. Snyder, S. van der Wal, Anal. Chem.53, 877 (1981).

    Article  CAS  Google Scholar 

  14. Y. Hayashi, R. Matsuda, Chemom. Intell. Lab Syst.18, 1 (1993).

    Article  CAS  Google Scholar 

  15. Y. Hayashi, R. Matsuda, Advances in Chromatography1994, Chapter 7.

  16. Y. Hayashi, R. Matsuda, Anal. Sci.10, 553 (1994).

    Article  CAS  Google Scholar 

  17. R. B. Poe, S. C. Rutan, Anal. Chim. Acta283, 845 (1993).

    Article  CAS  Google Scholar 

  18. R. E. Synovec, E. S. Yeung, Anal. Chem.57, 2162 (1985).

    Article  CAS  Google Scholar 

  19. T. Hirschfeld, Appl. Spectrosc.30, 67 (1976).

    Article  Google Scholar 

  20. E. H. Piepmeier, Anal. Chem.48, 1296 (1976).

    Article  CAS  Google Scholar 

  21. Y. Hayashi, R. Matsuda, Anal. Chem.66, 2874 (1994).

    Article  CAS  Google Scholar 

  22. H. C. Smit, H. L. Walg, Chromatographia8, 311 (1975).

    Article  CAS  Google Scholar 

  23. A. Bezegh, J. Janata, Anal. Chem.59, 494A (1987).

  24. I. G. Giles, M. G. Gore, Anal. Chim. Acta151, 123 (1983).

    Article  CAS  Google Scholar 

  25. R. P. Singhal, D. B. Smoll, J. Liquid Chromatogr.9, 2719 (1986).

    Article  CAS  Google Scholar 

  26. J. Olivo, P. Cardot, I. Ignatiadis, C. Vidal-Madjar, J. Chromatogr.395, 383 (1987).

    Article  CAS  Google Scholar 

  27. P. J. P. Cardot, P. Trolliard, S. Tembely, J. Pharm. Biomed. Anal.8, 755 (1990).

    Article  CAS  Google Scholar 

  28. M. O. Koskinen, L. K. Koskinen, J. Liquid Chromatogr.16, 3171 (1993).

    Article  CAS  Google Scholar 

  29. C. N. Renn, R. E. Synovec, Anal. Chem.60, 1829 (1988).

    Article  CAS  Google Scholar 

  30. A. W. Moore, Jr.,J. W. Jorgenson, Anal. Chem.65, 188 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Second Part of series cited as Ref. [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Y., Matsuda, R. Prediction of precision from signal and noise measurement in liquid chromatography: Mathematical relationship between integration domain and precision. Chromatographia 41, 75–83 (1995). https://doi.org/10.1007/BF02688003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02688003

Key Words

Navigation