Skip to main content
Log in

Stability of equilibrium for an inverted two-link mathematical pendulum with critical tracking forces

  • Published:
International Applied Mechanics Aims and scope

Abstract

We investigate nonlinear stability for equilibrium of a pendulum with viscoelastic components. The tracking force is chosen so that the matrix of the linearized part of the perturbed motion has two purely imaginary roots or one zero and one negative root. The other two roots are complex with negative real part. The boundary of the domain of stability is divided into “dangerous” and “safe” (in the sense of Bautin) zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol'd, “Lectures on bifurcation in versal families,”Usp. Mat. Nauk,27, 119–184 (1972).

    MATH  Google Scholar 

  2. N. N. Bautin,The Behavior of Dynamic Systems Close to the Boundary of the Domain of Stability [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  3. I. G. Boruk and L. G. Lobas, “On the motion of an inverted two-link mathematical pendulum with tracking force,”Prikl. Mekh.,35, No. 7, 108–112 (1999).

    MATH  Google Scholar 

  4. Yu. P. Varkhalev and G. V. Gorr, “Asymptotic pendulum motion of Hesse-Appelroth gyroscopes,”Prikl. Mat. Mekh.,48, No. 3, 490–493 (1984).

    Google Scholar 

  5. V. I. Gulyaev, A. L. Zubritskaya, and V. L. Koshkin, “On doubling the period of oscillation of a variable-length pendulum,”Prikl. Mekh.,26, No. 6, 74–80 (1990).

    Google Scholar 

  6. A. A. Zevin and B. I. Moroz, “Qualitative investigation of the stability of forced oscillation of two connected pendulums,”Prikl. Mekh.,21, No. 6, 89–94 (1985).

    Google Scholar 

  7. A. A. Zevin and L. A. Filonenko, “Periodic oscillation of a pendulum with horizontal vibration of pivot points,”Prikl. Mekh.,24, No. 8, 103–107 (1988).

    Google Scholar 

  8. A. Yu. Ishlinskii, V. A. Storozhenko, and M. E. Temchenko, “Quasiparadoxical motion of a rigid body,”Prikl. Mekh.,28, No. 9, 3–17 (1992).

    Google Scholar 

  9. T. S. Krasnopol'skaya and A. Yu. Shvets, “Chaotic oscillation of a spherical pendulum as an effect of interaction with an energy source,”Prikl. Mekh.,28, No. 10, 61–68 (1992).

    MATH  Google Scholar 

  10. L. G. Lobas, “Nonlinear stability and Y-shaped bifurcation in dynamic systems with simple symmetry,”Prikl. Mat. Mekh.,60, No. 2, 327–332 (1996).

    Google Scholar 

  11. L. G. Lobas, “Invariant manifolds and behavior of dynamic systems with symmetries close to the boundary of the domain of stability,”Prikl. Mat. Mekh.,32, No. 5, 81–88 (1996).

    Google Scholar 

  12. A. M. Lyapunov,Collected Works, in Three Volumes [in Russian], Vol. 2, Izd. Akad. Nauk SSSR, Moscow-Leningrad (1956).

    Google Scholar 

  13. A. N. Maryuta, “The dynamics of an inverted pendulum with vibrating pivot,”Prikl. Mekh.,29, No. 12, 78–86 (1993).

    Google Scholar 

  14. T. G. Strizhak,Methods for Investigating Dynamic Systems of Pendulum Type [in Russian], Izd. Nauka Kaz. SSR, Alma-Ata (1981).

    Google Scholar 

  15. K. N. Shevchenko, “On the motion of a pendulum,”Prikl. Mekh.,32, No. 6, 90–94 (1996).

    Google Scholar 

  16. P. Hagedorn, “On the destabilizing effect of nonlinear damping in nonconservative systems with follower forces,”Int. J. Nonlinear Mechanics,5, No. 2, 341–358 (1970).

    Article  MATH  Google Scholar 

  17. H. Troger, and K. Zeman, “Zur Korrekten Modellbildung in der Dynamik Diskreter Systeme,”Ing. Arch.,51, No. 1/2, 13–43 (1981).

    Google Scholar 

  18. H. Troger, and A. Steindl,Nonlinear Stability and Bifurcation Theory, Springer-Verlag, Vienna-New York (1991).

    MATH  Google Scholar 

  19. H. Ziegler, “Die Stabilitatskriterien der Elastomechanik,”Ing. Arch. 20, No. 1 49–56 (1952).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Mekhanika, Vol. 35, No. 9, pp. 100–105, September, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boruk, I.G., Lobas, L.G. Stability of equilibrium for an inverted two-link mathematical pendulum with critical tracking forces. Int Appl Mech 35, 962–967 (1999). https://doi.org/10.1007/BF02682293

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02682293

Keywords

Navigation