Skip to main content
Log in

Stabilization of the Double-inverted Pendulum with an Elastic Joint

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

Stabilization of unstable systems is an important problem in the field of nonlinear dynamics with rich applications in engineering and applied sciences.

Purpose

In this article we propose algorithms for stabilizing a double pendulum with an elastic joint. The stability zones in the parameter space of the model are obtained within the analytical approach.

Methods

Feedback principle, software stabilization, as well as the Routh-Hurwitz stability criterion.

Results

The critical value of the elastic coupling coefficient between the arms of the double inverted pendulum is found. This value allows to achieve the stabilization of the considered system in a small neighborhood of an unstable equilibrium.

Conclusion

The obtained results open up new perspectives for stabilizing unstable systems in the field of the applied problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Stephenson A (1908) On an induced stability. Phil Mag 15:233

    Article  MATH  Google Scholar 

  2. Zhang M, Zhang Y, Ji B, Ma C, Cheng X (2020) Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spherical-pendulum effects. Measur Control 53:141–150

    Article  Google Scholar 

  3. Ziegler H (1952) Die stabilitltskriterien der elastomechanik. Ing Arch 20:49–56

    Article  Google Scholar 

  4. Butikov EI (2010) Stabilization of an inverted pendulum (60th anniversary of kapitsa’s pendulum). Comput Tools Educ 5:39–51

    Google Scholar 

  5. Chernousko FL, Akulenko SB (1980) Swing control. Science, 383

  6. E.I B (2002) Subharmonic resonances of the parametrically driven pendulum. J Phys A Math Theor 35:6209–6231

    Google Scholar 

  7. Semenov ME, Solovyov AM, Meleshenko PA, Kanishcheva OI (2021) Stabilization of a flexible inverted pendulum via hysteresis control: The bouc-wen approach. Vibrat Eng Technol Machin Proc VETOMAC XV 2019:267–279

    Article  Google Scholar 

  8. Medvedskii A, Meleshenko P, Nesterov V, Reshetova OO, AS, Semenov ME, (2020) Unstable oscillating systems with hysteresis. Problems of stabilization and control. J Comput Syst Sci Int 59(4):533–556

  9. Reshmin SA (2006) C.F.L.: Optimal in terms of speed control of an inverted pendulum in the form of synthesis. Izvestiya RAN. Theory Control Syst 3:51–62

    MathSciNet  Google Scholar 

  10. BOLOTIN VV (1963) Non-conservative problems of the theory of elastic stability. Pergamon Press

  11. Semenov M, Solovyov AM, Meleshenko PA, Reshetova OO (2020) Efficiency of hysteretic damper in oscillating systems. Mathem Model Natur Phenom 15:43

    Article  MathSciNet  MATH  Google Scholar 

  12. Semenov ME, Solovyov AM, Meleshenko PA (2021) Stabilization of coupled inverted pendula: From discrete to continuous case. J Vibrat Control 27(1–2):43–56

    Article  MathSciNet  Google Scholar 

  13. Semenov ME, Solovyov AM, Popov Mikhail A, PAM, (2018) Coupled inverted pendulums: stabilization problem. Arch Appl Mechan 88(4):517–524

  14. Sun JY, L.X.T. Huang XC (2013) Study on the force transmissibility of vibration isolators with geometric nonlinear. Nonlinear Dyn 74(4):1103–1112

    Article  Google Scholar 

  15. Kapitsa PL (1951) Dynamic stability of the pendulum at an oscillating suspension point. ZhETF 19(21):588–597

    Google Scholar 

  16. Damping Nonlinear (2018) S ME, S AM, M PA. R OO. From Viscous to Hysteretic 199:259–275

  17. M E (1918) Ueber schüttelerscheinungen in systemen mit periodisch veränderlicher elastizität. Schweizerische Bauzeitung 72(11):95–98

    Google Scholar 

Download references

Acknowledgements

The contributions by M.E. Semenov and P.A. Meleshenko were supported by the RSF grant No. 19-11-00197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Proshunin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Analytical Determination for the Stiffness Coefficient

$$\begin{aligned}&\alpha _{3}>0 \wedge \\&\left( \left( \alpha _{3}+\alpha _{4}<0 \wedge \alpha _{1}>\frac{g\left( m_{1}+m_{2}\right) }{m_{1}+2 m_{2}}\wedge \right. \right. \\&\quad \left. \left. \frac{g m_{2} \alpha _{3}+\left( -g\left( m_{1}+m_{2}\right) +\left( m_{1}+2 m_{2}\right) \alpha _{1}\right) \alpha _{4}}{\left( m_{1}+2 m_{2}\right) \alpha _{3}}<\alpha _{2}\right. \right. \wedge \\&\alpha _{1}+\alpha _{2}<g \wedge \\&\quad \frac{m_{2}\left( \left( g m_{2}+m_{1} \alpha _{2}\right) \alpha _{3}^{2}-m_{1} \alpha _{1} \alpha _{3} \alpha _{4}-g\left( m_{1}+m_{2}\right) \alpha _{4}^{2}\right) }{l\left( \alpha _{3}+\alpha _{4}\right) \left( 2 m_{2} \alpha _{3}-\left( m_{1}+2 m_{2}\right) \alpha _{4}\right) }< k \wedge \\&\left. k<\frac{g m_{2}\left( m_{1}+m_{2}\right) }{2\left( m_{1}+2 m_{2}\right) }\right) \vee \left( -\alpha _{3}<\alpha _{4}<\frac{2 m_{2} \alpha _{3}}{m_{1}+2 m_{2}} \wedge \right. \\&\quad \left. \left( \left( \alpha _{1}<\frac{g\left( m_{1}+m_{2}\right) }{m_{1}+2 m_{2}}\right. \right. \right. \wedge \\&\left. \alpha _{1}+\alpha _{2}>g \wedge \right. \\&\quad \left. k>\frac{m_{2}\left( \left( g m_{2}+m_{1} \alpha _{2}\right) \alpha _{3}^{2}-m_{1} \alpha _{1} \alpha _{3} \alpha _{4}-g\left( m_{1}+m_{2}\right) \alpha _{4}^{2}\right) }{l\left( \alpha _{3}+\alpha _{4}\right) \left( 2 m_{2} \alpha _{3}-\left( m_{1}+2 m_{2}\right) \alpha _{4}\right) }\right) \vee \\&\left( \frac{g\left( m_{1}+m_{2}\right) }{m_{1}+2 m_{2}}=\alpha _{1} \wedge \alpha _{2}>\right. \\&\left. \quad \frac{g m_{2} \alpha _{3}+\left( -g\left( m_{1}+m_{2}\right) +\left( m_{1}+2 m_{2}\right) \alpha _{1}\right) \alpha _{4}}{\left( m_{1}+2 m_{2}\right) \alpha _{3}}\right. \wedge \\&\left. k>\frac{m_{2}\left( \left( g m_{2}+m_{1} \alpha _{2}\right) \alpha _{3}^{2}-m_{1} \alpha _{1} \alpha _{3} \alpha _{4}-g\left( m_{1}+m_{2}\right) \alpha _{4}^{2}\right) }{l\left( \alpha _{3}+\alpha _{4}\right) \left( 2 m_{2} \alpha _{3}-\left( m_{1}+2 m_{2}\right) \alpha _{4}\right) }\right) \vee \\&\left( \alpha _{1}>\frac{g\left( m_{1}+m_{2}\right) }{m_{1}+2 m_{2}} \wedge \left( \left( k>\frac{g m_{2}\left( m_{1}+m_{2}\right) }{l\left( m_{1}+2 m_{2}\right) } \wedge g<\alpha _{1}+\alpha _{2}\right. \right. \right. \wedge \\&\left. \alpha _{2}<\frac{g m_{2} \alpha _{3}+\left( -g\left( m_{1}+m_{2}\right) +\left( m_{1}+2 m_{2}\right) \alpha _{1}\right) \alpha _{4}}{\left( m_{1}+2 m_{2}\right) \alpha _{3}}\right) \vee \\&\left( k>\frac{m_{2}\left( \left( g m_{2}+m_{1} \alpha _{2}\right) \alpha _{3}^{2}-m_{1} \alpha _{1} \alpha _{3} \alpha _{4}-g\left( m_{1}+m_{2}\right) \alpha _{4}^{2}\right) }{2\left( \alpha _{3}+\alpha _{4}\right) \left( 2 m_{2} \alpha _{3}-\left( m_{1}+2 m_{2}\right) \alpha _{4}\right) }\right. \wedge \\&\left. \left. \left. \left. \alpha _{2} \ge \frac{g m_{2} \alpha _{3}+\left( -g\left( m_{1}+m_{2}\right) +\left( m_{1}+2 m_{2}\right) \alpha _{1}\right) \alpha _{4}}{\left( m_{1}+2 m_{2}\right) \alpha _{3}}\right) \right) \right) \right) \vee \\&\left( \frac{2 m_{2} \alpha _{3}}{m_{1}+2 m_{2}}=\alpha _{4} \wedge \alpha _{1}>\frac{g\left( m_{1}+m_{2}\right) }{m_{1}+2 m_{2}} \wedge g<\alpha _{1}+\alpha _{2}\right. \wedge \\&\alpha _{2}<\frac{g m_{2} \alpha _{3}+\left( -g\left( m_{1}+m_{2}\right) +\left( m_{1}+2 m_{2}\right) \alpha _{1}\right) \alpha _{4}}{\left( m_{1}+2 m_{2}\right) \alpha _{3}} \wedge \\&\left. k>\frac{g m_{2}\left( m_{1}+m_{2}\right) }{2\left( m_{1}+2 m_{2}\right) }\right) \vee \\&\left( \alpha _{4}>\frac{2 m_{2} \alpha _{3}}{m_{1}+2 m_{2}} \wedge \alpha _{1}>\frac{g\left( m_{1}+m_{2}\right) }{m_{1}+2 m_{2}} \wedge g<\alpha _{1}+\alpha _{2}\right. \wedge \\&\alpha _{2}<\frac{g m_{2} \alpha _{3}+\left( -g\left( m_{1}+m_{2}\right) +\left( m_{1}+2 m_{2}\right) \alpha _{1}\right) \alpha _{4}}{\left( m_{1}+2 m_{2}\right) \alpha _{3}} \wedge \\&\frac{g m_{2}\left( m_{1}+m_{2}\right) }{2\left( m_{1}+2 m_{2}\right) }<k \wedge \\&\left. \left. k<\frac{m_{2}\left( \left( g m_{2}+m_{1} \alpha _{2}\right) \alpha _{3}^{2}-m_{1} \alpha _{1} \alpha _{3} \alpha _{4}-g\left( m_{1}+m_{2}\right) \alpha _{4}^{2}\right) }{l\left( \alpha _{3}+\alpha _{4}\right) \left( l m_{2} \alpha _{3}-\left( m_{1}+2 m_{2}\right) \alpha _{4}\right) }\right) \right) . \end{aligned}$$

Appendix B The Fundamental Matrix of Solutions

The fundamental matrix of solutions (22)

$$\begin{aligned} \Phi _1(t) = \begin{pmatrix} \beta _{00} &{} \beta _{01} &{} \beta _{02} &{} \beta _{03} \\ \beta _{10} &{} \beta _{11} &{} \beta _{12} &{} \beta _{13} \\ \beta _{20} &{} \beta _{21} &{} \beta _{22} &{} \beta _{23} \\ \beta _{30} &{} \beta _{31} &{} \beta _{32} &{} \beta _{33} \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} \begin{array}{lcl} \beta _{00} = \frac{\sqrt{- 2 y_{1} + 4 y_{2}} \left( - \frac{x_{1}}{2} - \frac{x_{2}}{2} + \frac{y_{1}}{4} - \frac{y_{2}}{2}\right) e^{- \frac{\sqrt{2} t \sqrt{- y_{1} + 2 y_{2}}}{2}}}{x_{1} x_{3}}, \\ \beta _{01} = \frac{\sqrt{- 2 y_{1} + 4 y_{2}} \left( \frac{x_{1}}{2} + \frac{x_{2}}{2} - \frac{y_{1}}{4} + \frac{y_{2}}{2}\right) e^{\frac{\sqrt{2} t \sqrt{- y_{1} + 2 y_{2}}}{2}}}{x_{1} x_{3}}, \\ \beta _{02} = - \frac{\sqrt{2 y_{1} + 4 y_{2}} \left( \frac{x_{1}}{2} + \frac{x_{2}}{2} + \frac{y_{1}}{4} + \frac{y_{2}}{2}\right) e^{- \frac{\sqrt{2} t \sqrt{y_{1} + 2 y_{2}}}{2}}}{x_{1} x_{3}}, \\ \beta _{03} = \frac{\sqrt{2 y_{1} + 4 y_{2}} \left( \frac{x_{1}}{2} + \frac{x_{2}}{2} + \frac{y_{1}}{4} + \frac{y_{2}}{2}\right) e^{\frac{\sqrt{2} t \sqrt{y_{1} + 2 y_{2}}}{2}}}{x_{1} x_{3}}, \\ \beta _{10} = \frac{\left( x_{1} - \frac{y_{1}}{2} + y_{2}\right) e^{- \frac{\sqrt{2} t \sqrt{- y_{1} + 2 y_{2}}}{2}}}{x_{1}}, \\ \beta _{11} = \frac{\left( x_{1} - \frac{y_{1}}{2} + y_{2}\right) e^{\frac{\sqrt{2} t \sqrt{- y_{1} + 2 y_{2}}}{2}}}{x_{1}}, \\ \beta _{12} = \frac{\left( x_{1} + \frac{y_{1}}{2} + y_{2}\right) e^{- \frac{\sqrt{2} t \sqrt{y_{1} + 2 y_{2}}}{2}}}{x_{1}}, \\ \beta _{13} = \frac{\left( x_{1} + \frac{y_{1}}{2} + y_{2}\right) e^{\frac{\sqrt{2} t \sqrt{y_{1} + 2 y_{2}}}{2}}}{x_{1}}, \\ \beta _{20} = \frac{\sqrt{- 2 y_{1} + 4 y_{2}} \left( - \frac{x_{1}}{2} - \frac{x_{2}}{2} + \frac{x_{3}}{2} + \frac{y_{1}}{4} - \frac{y_{2}}{2}\right) e^{- \frac{\sqrt{2} t \sqrt{- y_{1} + 2 y_{2}}}{2}}}{x_{1} x_{3}} ,\\ \beta _{21} = \frac{\sqrt{- 2 y_{1} + 4 y_{2}} \left( \frac{x_{1}}{2} + \frac{x_{2}}{2} - \frac{x_{3}}{2} - \frac{y_{1}}{4} + \frac{y_{2}}{2}\right) e^{\frac{\sqrt{2} t \sqrt{- y_{1} + 2 y_{2}}}{2}}}{x_{1} x_{3}}, \\ \beta _{22} = \frac{\sqrt{2 y_{1} + 4 y_{2}} \left( - \frac{x_{1}}{2} - \frac{x_{2}}{2} + \frac{x_{3}}{2} - \frac{y_{1}}{4} - \frac{y_{2}}{2}\right) e^{- \frac{\sqrt{2} t \sqrt{y_{1} + 2 y_{2}}}{2}}}{x_{1} x_{3}} ,\\ \beta _{23} = \frac{\sqrt{2 y_{1} + 4 y_{2}} \left( \frac{x_{1}}{2} + \frac{x_{2}}{2} - \frac{x_{3}}{2} + \frac{y_{1}}{4} + \frac{y_{2}}{2}\right) e^{\frac{\sqrt{2} t \sqrt{y_{1} + 2 y_{2}}}{2}}}{x_{1} x_{3}}, \\ \beta _{30} = e^{- \frac{\sqrt{2} t \sqrt{- y_{1} + 2 y_{2}}}{2}}, \; \beta _{31} = e^{\frac{\sqrt{2} t \sqrt{- y_{1} + 2 y_{2}}}{2}} \\ \beta _{32} = e^{- \frac{\sqrt{2} t \sqrt{y_{1} + 2 y_{2}}}{2}} , \; \beta _{33} = e^{\frac{\sqrt{2} t \sqrt{y_{1} + 2 y_{2}}}{2}}, \\ y_1 = \sqrt{x_{1}^{2} + 2 x_{1} x_{2} + 2 x_{1} x_{3} + x_{2}^{2} - 2 x_{2} x_{3} + x_{3}^{2}},\\ y_2 = - \frac{x_{1}}{2} - \frac{x_{2}}{2} + \frac{x_{3}}{2}. \end{array} \end{aligned}$$

Appendix C The Fundamental Matrix of Ssolutions

The fundamental matrix of solutions (23)

$$\begin{aligned} \Phi _2(t) = \begin{pmatrix} \gamma _{00} &{} \gamma _{01} &{} \gamma _{02} &{} \gamma _{03} \\ \gamma _{10} &{} \gamma _{11} &{} \gamma _{12} &{} \gamma _{13} \\ \gamma _{20} &{} \gamma _{21} &{} \gamma _{22} &{} \gamma _{23} \\ \gamma _{30} &{} \gamma _{31} &{} \gamma _{32} &{} \gamma _{33}, \end{pmatrix} \end{aligned}$$

where

$$\begin{aligned} \begin{array}{lcl} \gamma _{00} = \frac{\sqrt{- 2 y_{3} + 4 y_{4}} \left( - \frac{x_{4}}{2} - \frac{x_{5}}{2} + \frac{y_{3}}{4} - \frac{y_{4}}{2}\right) e^{- \frac{\sqrt{2} t \sqrt{- y_{3} + 2 y_{4}}}{2}}}{x_{4} x_{6}}, \\ \gamma _{01} = \frac{\sqrt{- 2 y_{3} + 4 y_{4}} \left( \frac{x_{4}}{2} + \frac{x_{5}}{2} - \frac{y_{3}}{4} + \frac{y_{4}}{2}\right) e^{\frac{\sqrt{2} t \sqrt{- y_{3} + 2 y_{4}}}{2}}}{x_{4} x_{6}}, \\ \gamma _{02} = - \frac{\sqrt{2 y_{3} + 4 y_{4}} \left( \frac{x_{4}}{2} + \frac{x_{5}}{2} + \frac{y_{3}}{4} + \frac{y_{4}}{2}\right) e^{- \frac{\sqrt{2} t \sqrt{y_{3} + 2 y_{4}}}{2}}}{x_{4} x_{6}}, \\ \gamma _{03} = \frac{\sqrt{2 y_{3} + 4 y_{4}} \left( \frac{x_{4}}{2} + \frac{x_{5}}{2} + \frac{y_{3}}{4} + \frac{y_{4}}{2}\right) e^{\frac{\sqrt{2} t \sqrt{y_{3} + 2 y_{4}}}{2}}}{x_{4} x_{6}}, \\ \gamma _{10} = \frac{\left( x_{4} - \frac{y_{3}}{2} + y_{4}\right) e^{- \frac{\sqrt{2} t \sqrt{- y_{3} + 2 y_{4}}}{2}}}{x_{4}}, \\ \gamma _{11} = \frac{\left( x_{4} - \frac{y_{3}}{2} + y_{4}\right) e^{\frac{\sqrt{2} t \sqrt{- y_{3} + 2 y_{4}}}{2}}}{x_{4}}, \\ \gamma _{12} = \frac{\left( x_{4} + \frac{y_{3}}{2} + y_{4}\right) e^{- \frac{\sqrt{2} t \sqrt{y_{3} + 2 y_{4}}}{2}}}{x_{4}}, \\ \gamma _{13} = \frac{\left( x_{4} + \frac{y_{3}}{2} + y_{4}\right) e^{\frac{\sqrt{2} t \sqrt{y_{3} + 2 y_{4}}}{2}}}{x_{4}}, \\ \gamma _{20} = \frac{\sqrt{- 2 y_{3} + 4 y_{4}} \left( - \frac{x_{4}}{2} - \frac{x_{5}}{2} + \frac{x_{6}}{2} + \frac{y_{3}}{4} - \frac{y_{4}}{2}\right) e^{- \frac{\sqrt{2} t \sqrt{- y_{3} + 2 y_{4}}}{2}}}{x_{4} x_{6}} ,\\ \gamma _{21} = \frac{\sqrt{- 2 y_{3} + 4 y_{4}} \left( \frac{x_{4}}{2} + \frac{x_{5}}{2} - \frac{x_{6}}{2} - \frac{y_{3}}{4} + \frac{y_{4}}{2}\right) e^{\frac{\sqrt{2} t \sqrt{- y_{3} + 2 y_{4}}}{2}}}{x_{4} x_{6}}, \\ \gamma _{22} = \frac{\sqrt{2 y_{3} + 4 y_{4}} \left( - \frac{x_{4}}{2} - \frac{x_{5}}{2} + \frac{x_{6}}{2} - \frac{y_{3}}{4} - \frac{y_{4}}{2}\right) e^{- \frac{\sqrt{2} t \sqrt{y_{3} + 2 y_{4}}}{2}}}{x_{4} x_{6}}, \\ \gamma _{23} = \frac{\sqrt{2 y_{3} + 4 y_{4}} \left( \frac{x_{4}}{2} + \frac{x_{5}}{2} - \frac{x_{6}}{2} + \frac{y_{3}}{4} + \frac{y_{4}}{2}\right) e^{\frac{\sqrt{2} t \sqrt{y_{3} + 2 y_{4}}}{2}}}{x_{4} x_{6}}, \\ \gamma _{30} = e^{- \frac{\sqrt{2} t \sqrt{- y_{3} + 2 y_{4}}}{2}} ,\; \gamma _{31} = e^{\frac{\sqrt{2} t \sqrt{- y_{3} + 2 y_{4}}}{2}} \\ \gamma _{32} = e^{- \frac{\sqrt{2} t \sqrt{y_{3} + 2 y_{4}}}{2}} ,\; \gamma _{33} = e^{\frac{\sqrt{2} t \sqrt{y_{3} + 2 y_{4}}}{2}} \\ y_3 = \sqrt{x_{4}^{2} + 2 x_{4} x_{5} + 2 x_{4} x_{6} + x_{5}^{2} - 2 x_{5} x_{6} + x_{6}^{2}}, \\ y_4 =- \frac{x_{4}}{2} - \frac{x_{5}}{2} + \frac{x_{6}}{2}. \end{array} \end{aligned}$$

Appendix D The Monodromy Matrix

The monodromy matrix of (20)

$$\begin{aligned} M = \begin{pmatrix} \theta _{00} &{} \theta _{01} &{} \theta _{02} &{} \theta _{03} \\ \theta _{10} &{} \theta _{11} &{} \theta _{12} &{} \theta _{13} \\ \theta _{20} &{} \theta _{21} &{} \theta _{22} &{} \theta _{23} \\ \theta _{30} &{} \theta _{31} &{} \theta _{32} &{} \theta _{33}. \end{pmatrix} \end{aligned}$$
(27)
$$\begin{aligned} \theta _{00}= & {} \left( 1+\frac{-\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \left( \frac{\left( x_{1}+x_{2}\right) \sqrt{-\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}\right. \\&\quad \left. +\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}-\frac{\sqrt{-\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \left( -\frac{\left( x_{1}+x_{2}\right) \sqrt{\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}-\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( x_{1}+x_{2}\right) \sqrt{-\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}-\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad \left( -\frac{\left( x_{4}+x_{5}\right) \sqrt{-\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}-\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( x_{1}+x_{2}\right) \sqrt{\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}+\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\ &\quad e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}}, \\ \theta _{10}= & {} \left( 1+\frac{-\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( 1+\frac{-\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{-\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( -\frac{\left( x_{4}+x_{5}\right) \sqrt{-\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}\right. \\&\quad \left. -\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( -\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right. \\&\quad \left. -\frac{\sqrt{-\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \cdot e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\ \theta _{20}= & {} \left( 1+\frac{-\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \left( \frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right. \\&\quad \left. +\frac{\sqrt{-\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}-\frac{\sqrt{-\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad \left( -\frac{\left( x_{4}+x_{5}\right) \sqrt{-\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}-\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}-\frac{\sqrt{\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\ &\quad \left( -\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}-\frac{\sqrt{-\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}+\frac{\sqrt{\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} ,\\ \theta _{30}= & {} \left( 1+\frac{-\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} \\&\quad e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}}+\left( -\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right. \\&\quad \left. -\frac{\sqrt{-\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( x_{4}+x_{5}\right) \sqrt{-\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}-\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} \\&\quad e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}}+e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}}, \\ \theta _{01}= & {} \left( 1+\frac{-\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \left( \frac{\left( x_{1}+x_{2}\right) \sqrt{-\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}\right. \\&\quad \left. +\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}+\frac{\sqrt{-\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \left( -\frac{\left( x_{1}+x_{2}\right) \sqrt{\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}-\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( x_{1}+x_{2}\right) \sqrt{-\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}-\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad \left( \frac{\left( x_{4}+x_{5}\right) \sqrt{-\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}+\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( x_{1}+x_{2}\right) \sqrt{\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}+\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}}, \\\end{aligned}$$
$$\begin{aligned} \theta _{11}= & {} \left( 1+\frac{-\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( 1+\frac{-\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) e^{\pi \sqrt{-\frac{y_{1}+y_{2}}{2}}}\\&\quad e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{-\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( \frac{\left( x_{4}+x_{5}\right) \sqrt{-\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}\right. \\&\quad \left. +\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( \frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right. \\&\quad \left. +\frac{\sqrt{-\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}}\\&\quad +\left( 1+\frac{\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \cdot e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} ,\\ \theta _{21}= & {} \left( 1+\frac{-\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \left( \frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right. \\&\quad \left. +\frac{\sqrt{-\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}-\frac{\sqrt{-\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\ &\quad \left( \frac{\left( x_{4}+x_{5}\right) \sqrt{-\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}+\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}-\frac{\sqrt{\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad \left( \frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}+\frac{\sqrt{-\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}+\frac{\sqrt{\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}}, \\ \theta _{31}= & {} \left( 1+\frac{-\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}}\\&\quad +\left( \frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}+\frac{\sqrt{-\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( x_{4}+x_{5}\right) \sqrt{-\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}+\frac{\left( -\frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}}+e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{-\frac{y_{3}}{2}+y_{4}}},\\ \end{aligned}$$
$$ \begin{aligned} \theta _{02}= & {} \left( 1+\frac{\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \left( \frac{\left( x_{1}+x_{2}\right) \sqrt{-\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}\right. \\&\quad \left. +\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{\sqrt{3}{2}}{+} y_{4}}} \\&\quad +\left( -\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}-\frac{\sqrt{\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \left( -\frac{\left( x_{1}+x_{2}\right) \sqrt{\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}-\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( x_{1}+x_{2}\right) \sqrt{-\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}-\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad \left( -\frac{\left( x_{4}+x_{5}\right) \sqrt{\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}-\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( x_{1}+x_{2}\right) \sqrt{\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}+\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} ,\\ \theta _{12}= & {} \left( 1+\frac{-\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( 1+\frac{\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{-\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( -\frac{\left( x_{4}+x_{5}\right) \sqrt{\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}\right. \\&\quad \left. -\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( -\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right. \\&\quad \left. -\frac{\sqrt{\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{v_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{v_{3}}{2}+y_{4}}}, \\ \theta _{22}= & {} \left( 1+\frac{\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \left( \frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right. \\&\quad \left. +\frac{\sqrt{-\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\ &\quad +\left( -\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}-\frac{\sqrt{-\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad \left( -\frac{\left( x_{4}+x_{5}\right) \sqrt{\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}-\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}-\frac{\sqrt{\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad \left( -\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}-\frac{\sqrt{\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}+\frac{\sqrt{\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}}. \\ \end{aligned}$$
$$ \begin{aligned} \theta _{32}= & {} \left( 1+\frac{\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}-\frac{\sqrt{\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( x_{4}+x_{5}\right) \sqrt{\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}-\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}}+e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{-\pi \sqrt{\frac{y_{3}}{2}+y_{4}}},\\ \theta _{03}= & {} \left( 1+\frac{\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \left( \frac{\left( x_{1}+x_{2}\right) \sqrt{-\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}\right. \\&\quad \left. +\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}+\frac{\sqrt{\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \left( -\frac{\left( x_{1}+x_{2}\right) \sqrt{\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}-\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( x_{1}+x_{2}\right) \sqrt{-\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}-\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad \left( \frac{\left( x_{4}+x_{5}\right) \sqrt{\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}+\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( x_{1}+x_{2}\right) \sqrt{\frac{y_{1}}{2}+y_{2}}}{x_{1} x_{3}}+\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} , \\ \theta _{13}= & {} \left( 1+\frac{-\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( 1+\frac{\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{-\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( \frac{\left( x_{4}+x_{5}\right) \sqrt{\frac{y_{3}}{2}+y_{4}}}{x_{4}x_{6}}\right. \\&\quad + \left. \frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4}x_{6}}\right) e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) \left( \frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4}x_{6}}\right. \\&\quad \left. +\frac{\sqrt{\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4}x_{6}}\right) \\&\quad e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{3_{3}}{2}+y_{4}}} \\&\quad +\left( 1+\frac{\frac{y_{1}}{2}+y_{2}}{x_{1}}\right) e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_3}{2}+y_{4}}} ,\\ \theta _{23}= & {} \left( 1+\frac{\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) \left( \frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}\right. \\&\quad \left. +\frac{\sqrt{-\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{\not 3}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( -\frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}-\frac{\sqrt{-\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad \left( \frac{\left( x_{4}+x_{5}\right) \sqrt{\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}+\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( -\frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}-\frac{\sqrt{\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad \left( \frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}+\frac{\sqrt{\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_3}{2}+y_{4}}} \\&\quad +\left( \frac{\left( \frac{y_{1}}{2}+y_{2}\right) ^{\frac{3}{2}}}{x_{1} x_{3}}+\frac{\sqrt{\frac{y_{1}}{2}+y_{2}}\left( x_{1}+x_{2}-x_{3}\right) }{x_{1} x_{3}}\right) \\&\quad e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}}, \\ \theta _{33}= & {} \left( 1+\frac{\frac{y_{3}}{2}+y_{4}}{x_{4}}\right) e^{\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} \\&\quad e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}}+\left( \frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right. \\&\quad \left. +\frac{\sqrt{\frac{y_{3}}{2}+y_{4}}\left( x_{4}+x_{5}-x_{6}\right) }{x_{4} x_{6}}\right) \\&\quad \cdot e^{-\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}} \\&\quad +\left( \frac{\left( x_{4}+x_{5}\right) \sqrt{\frac{y_{3}}{2}+y_{4}}}{x_{4} x_{6}}+\frac{\left( \frac{y_{3}}{2}+y_{4}\right) ^{\frac{3}{2}}}{x_{4} x_{6}}\right) \\&\quad e^{-\pi \sqrt{-\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}}\\&\quad +e^{\pi \sqrt{\frac{y_{1}}{2}+y_{2}}} e^{\pi \sqrt{\frac{y_{3}}{2}+y_{4}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proshunin, A.I., Semenov, M.E., Meleshenko, P.A. et al. Stabilization of the Double-inverted Pendulum with an Elastic Joint. J. Vib. Eng. Technol. 10, 2361–2371 (2022). https://doi.org/10.1007/s42417-022-00583-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00583-z

Keywords

Navigation